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Lecture 5: Complications for Design and Inference Noncompliance and the LATE estimand

LATE—Local Average Treatment Effects

Sometimes you give a medicine but only a non random sample of people actually try to
use it. Can you still estimate the medicine’s effect?

X = 0 X = 1
T = 0 y00 y01

(n00) (n01)
T = 1 y10 y11

(n10) (n11)

Say that people are one of 3 types:

na “always takers” have X = 1 no matter what and have average outcome ya

nn never takers have X = 0 no matter what with outcome yn

nc compliers have X = T and average outcomes y1c if treated and y0c if not.
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LATE—Local Average Treatment Effects

Sometimes you give a medicine but only a non random sample of people
actually try to use it. Can you still estimate the medicine’s effect?

X = 0 X = 1
T = 0 y00 y01

(n00) (n01)
T = 1 y10 y11

(n10) (n11)

We can figure something about types:
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T = 0
1
2

nc

1
2

nc+
1
2

nn
y0c +

1
2

nn

1
2

nc+
1
2

nn
yn ya

T = 1 yn

1
2

nc

1
2

nc+
1
2

na
y1c +

1
2

na

1
2

nc+
1
2

na
ya

Macartan Humphreys Lectures on causal inference and experimental methods 193 / 225



Lecture 5: Complications for Design and Inference Noncompliance and the LATE estimand

LATE—Local Average Treatment Effects

You give a medicine to 50% but only a non random sample of people actually try to use it.
Can you still estimate the medicine’s effect?

X = 0 X = 1

T = 0 nc

nc+nn
y0c +

nn

nc+nn
yn ya

(n) ( 1
2
(nc + nn)) ( 1

2
na)

T = 1 yn
nc

nc+na
y1c +

na

nc+na
ya

(n) ( 1
2
nn) ( 1

2
(na + nc))

Average in T = 0 group:
nc y0c+(nnyn+naya)

na+nc+nn

Average in T = 1 group:
nc y1c+(nnyn+naya)

na+nc+nn

Difference: ITT = (y 1c − y 0c) nc

n

So: LATE = ITT ×
n

nc
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The good and the bad of LATE

You get a well defined estimate even when there is non random take up

May sometimes be used to assess mediation or knock-on effects

But:

You need assumptions (monotonicity and the exclusion restriction –
where were these used above?)
Your estimate is only for a subpopulation
the subpopulation is not chosen by you and is unknown
Different encouragements may yield different estimates since they may
encourage different subgroups
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Lecture 5: Complications for Design and Inference Spillovers

SUTVA violations (Spillovers)

Spillovers can result in the estimation of weaker effects when effects are actually stronger.

Control Treatment

No spillovers. Total effect = 4, Estimated Effect = 4

0
1

2
3

4

Control Treatment

With spillovers. Total effect = 7, Estimated Effect = 1

0
1

2
3

4

The key problem is that Y (1) and Y (0) are not sufficient to describe potential outcomes
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SUTVA violations

More completely specified potential outcomes (and estimands)

0 1 2 3 4
Unit Location D∅ y(D∅) D1 y(D1) D2 y(D2) D3 y(D3) D4 y(D4)
A 1 0 0 1 3 0 1 0 0 0 0
B 2 0 0 0 3 1 3 0 3 0 0
C 3 0 0 0 0 0 3 1 3 0 3
D 4 0 0 0 0 0 0 0 1 1 3

ȳtreated - 3 3 3 3
ȳuntreated 0 1 4/3 4/3 1
ȳneighbors - 3 2 2 3
ȳpure control 0 0 0 0 0

ATT (direct effect) - 3 3 3 3
ATT (indirect effect) - 3 2 2 3

Table 24: Potential outcomes for four units for different treatment profiles, D1-D4.
Di represents an allocation to treatment and yj(Di) is the potential outcome for
(row) unit j given (column) allocation i .
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SUTVA violations

0 1 2 3 4
Unit Location D∅ y(D∅) D1 y(D1) D2 y(D2) D3 y(D3) D4 y(D4)
A 1 0 0 1 3 0 1 0 0 0 0
B 2 0 0 0 3 1 3 0 3 0 0
C 3 0 0 0 0 0 3 1 3 0 3
D 4 0 0 0 0 0 0 0 1 1 3

Table 25: Potential outcomes for four units for different treatment profiles, D1-D4.
Di represents an allocation to treatment and yj(Di) is the potential outcome for
(row) unit j given (column) allocation i .

The key is to think through the structure of spillovers.
Here immediate neighbors are exposed
In this case we can define a direct treatment (being exposed) and
an indirect treatment (having a neighbor exposed) and we can work
out the propensity for each unit of receiving each type of treatment

These may be non uniform (here central types are more likely to have
teated neighbors); but we can still use the randomization to assess
effects

Idea: You can use the design to get a handle on spillovers
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SUTVA violations}

Even still, to estimate effects you need some SUTVA like assumption.

But NB: Estimates of treatment effects are sensitive to assumptions of spillover structures. In
this example if one compared the outcome between treated units and all control units that are
at least n positions away from a treated unit you will get the wrong answer unless n ≥ 7.
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Mediation
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Lecture 5: Complications for Design and Inference Mediation

The problem of unidentified mediators

Consider a causal system like the below.
The effect of X on M1 and M2 can be measured in the usual way.
But unfortunately if there are multiple mediators the effect of M1 (or M2) on Y is
not identified.
The ‘excluson restriction’ is obviously violated when there are multiple mediators
(unless you can account for them all).
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Lecture 5: Complications for Design and Inference Mediation

The problem of unidentified mediators}

An obvious approach is to first examine the (average) effect of X on M1 and then
use another manipulation to examine the (average) effect of M1 on Y.
But both of these average effects may be positive (for example) even if there
is no effect of X on Y through M1.
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Lecture 5: Complications for Design and Inference Mediation

The problem of unidentified mediators}

An obvious approach is to first examine the (average) effect of X on M1 and then
use another manipulation to examine the (average) effect of M1 on Y.
Similarly both of these average effects may be zero even if X affects on Y
through M1 for every unit!.
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Lecture 5: Complications for Design and Inference Mediation

The problem of unidentified mediators}

Another somewhat obvious approach is see how the effect of X on Y in a regression
is reduced when you control for M. If the effect of X on Y passes through M then
surely there should be no effect of X on Y after you control for M.

But this common strategy is also not guaranteed to produce reliable results

See Imai on better ways to think about this problem and designs to address it
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The problem of unidentified mediators: Quantities

In the potential outcomes framework we can describe a mediation
effect as (see Imai et al):

δi(t) = Yi(t, Mi(1)) − Yi(t, Mi(0)) for t = 0, 1

The direct effect is:

ψi(t) = Yi(1, Mi(t)) − Yi(0, Mi(t)) for t = 0, 1

This is a decomposition, since:

Yi(1, Mi(1)) − Y1(0, Mi(0)) =
1

2
(δi(1) + δi(0) + ψi(1) + ψi(0))

If (and a big if), there are no interaction effects—ie
δi(1) = δi(0), ψi(1) = ψi(0), then

Yi(1, Mi(1)) − Y1(0, Mi(0)) = δi + ψi

The bad news is that although a single experiment might identify the
total effect, it can not identify these elements of the direct effect.
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The problem of unidentified mediators: Solutions?

Check formal requirement for identification under single experiment
design (“sequential ignorability”—that, conditional on actual
treatment, it is as if the value of the mediation variable is randomly
assigned relative to potential outcomes). But this is strong (and in fact
unverifiable) and if it does not hold, bounds on effects always include
zero (Imai et al)
You can use interactions with covariates if you are willing to make
assumptions on no heterogeneity of direct treatment effects
over covariates. eg you think that money makes people get to work
faster because they can buy better cars; you look at the marginal effect
of more money on time to work for people with and without cars and
find it higher for the latter. This might imply mediation through
transport but only if there is no direct effect heterogeneity (eg people
with cars are less motivated by money).

Macartan Humphreys Lectures on causal inference and experimental methods 207 / 225



Lecture 5: Complications for Design and Inference Mediation

The problem of unidentified mediators: Solutions?

Weaker assumptions justify ‘parallel design’

Group A: T is randomly assigned, M left free.
Group B: divided into four groups T × M (requires two more
assumptions (1) that the manipulation of the mediator only affects
outcomes through the mediator (2) no interaction, for each unit,
Y (1, m) − Y (0, m) = Y (1, m′) − Y (0, m′).)

Idea 5: Understanding mechanisms is harder than you think. Figure out
what assumptions fly.

Skip to Spillovers or Big Ideas
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