DeclareDesign: Simulation and Characteristics of Research Designs

Tara Slough

EGAP Learning Days IX: February 2018

Research Design Form and Research Design

Research design form includes

- Substantive details about your project (Section 1)
- Elements of the research design
- Research designs exist independently of the application
 - A two-arm experiment with 50 units per arm randomized using simple random assignment (coin flip) could be used to study the effects of many treatments
 - Designs have statistical properties
 - We shoud assess a design by asking the question: "What we could we learn/have learned from the design?"

Four Elements of a Research Design

- Regardless of the method, research designs have four components
- MIDA:
 - ► *M*: Model (of how the world works)
 - ► *I*: Inquiry
 - D: Data strategy
 - A: Answer strategy

Model

A model of how the world works, includes:

- Endogenous variables
- Exogenous variables
- Functional relations between variables (potential outcomes)
- Probability distribution over exogenous variables
- Somewhat more formal mapping of theory into the data than we are accustomed to
 - Can be thought of as a characterization of the data generating process (DGP)
- ► Note that this is fully general, not application-specific

Notes on the Model

- Where does it come from:
 - Theory
 - Past evidence
- The model is wrong by definition. If it were correct, you wouldn't need to do the study.
- But, without a model, we don't have a place to start in terms of assessing what *can* be learned

Inquiry

- An answerable question
 - ► Typically causal: What are the effects of Z on Y? What are the determinants of Y?
- Usually a quantity of interest, some summary of the data:
 - ▶ Descriptive: What is the mean of Y when some variable, Z = 1, formally E[Y|Z = 1]?
 - Causal: What is the average difference of Y when Z = 1 versus when Z = 0, formally E[Y|Z = 1] − E[Y|Z = 0]?
 - Quantity is the estimand
- Not all questions that we want to ask are answerable
 - And the range of inquiries we can ask are limited: how much can we learn from some summary quantity?

Data

- Realize (generate) data on the set of variables
- A function of your model
- Includes both:
 - Sampling how units arrive in your sample
 - Treatment assignment what values of endogenous variables are revealed
- Fully general for all empirical social science:
 - Qualitative
 - Quantitative

Answer

- ▶ Given a realization of the data, generate an answer → an estimate of the quantity of interest (inquiry)
- This is your estimator:
 - Difference-in-means
 - Regression methods
 - etc.
- Answer is an estimate of the quantity of interest (inquiry/estimand)
 - ▶ We are used to looking at answers often without a clear inquiry

Logic of Simulation (Monte Carlo)

- With a model, inquiry, data (strategy), and answer we can simulate a research design.
- Mapping to standard Monte Carlo methods (roughly):
 - Model = Data generating process (DGP)
 - Inquiry = Estimand
 - Data = Realization of data generated by DGP
 - Analysis = Estimator
- As in standard Monte Carlo techniques:
 - Learn properties of estimator
 - Or, in this case, properties of research design

Properties of the Design

- Measured in terms of "diagnosands"
 - Well known: bias, RMSE, power
 - Plus many, many more...
- Designs can be compared or evaluated on the basis of statistical properties
 - Core insight: some research designs are better able to provide answers than others
 - For empirical work, we should use the best design available, given cost, ethical, and practical limitations

What does this mean for you?

- In parallel with the research design form, simulation will help you understand the properties of the design you are working on
 - A form of design "visualization"
 - Simulation allows for understanding of the consequences of different design choices
 - i.e. Do I need 300 instead of 200 units?
- DeclareDesign is a set of tools in R, including the packages:
 - randomizr: randomization, sampling etc.
 - fabricatr: generates data sets consistent with the specified model
 - estimatr: standard causal estimators, (computationally) efficient estimation

Design Form and DeclareDesign

- Design form: includes both substantive application and research design
 - Substantive content including question, motivation, context
 - Research design features, ideally refined by simulation
- ► Goal for the week:
 - Sufficient development of project such that you can fill in the research design form completely