
Estimation, ATE, SE

Natalia Garbiras-Díaz

April 10, 2019

A simulation in R: sample mean as an unbiased estimator
of the population mean

First, we will need to “create” a population (a study group)
population <- c(4, 5, 7, 12, 7, 8, 9, -3, 5, 8, 9, 3, 2, 3, 4, 6, 10, 4, 6, 7, 8, 9, 2)

N <- length(population) # number of observations in the population
N

[1] 23

pop_mean <- mean(population) # population mean
pop_mean

[1] 5.869565

We will draw several random samples of 8 observations (m) each
without replacement
set.seed(12345)
s1 <- sample(population, size = 8, replace = FALSE)

s2 <- sample(population, size = 8, replace = FALSE)

s3 <- sample(population, size = 8, replace = FALSE)

s4 <- sample(population, size = 8, replace = FALSE)

samples <- rbind(s1, s2, s3, s4)

samples

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
s1 3 6 6 9 5 7 8 9
s2 8 10 -3 9 8 4 3 12
s3 -3 3 7 5 3 2 8 9
s4 6 2 5 7 5 12 -3 9

Remember the population mean: 5.8695652

And the means of the four samples
apply(samples, MARGIN = 1, FUN = mean) # apply function to rows

s1 s2 s3 s4
6.625 6.375 4.250 5.375

By chance each given sample mean may be a little higher or lower
than the population mean.

We can use R to show that the sample mean is an unbiased
estimator of the population mean.

For this, we will write a simulation. We will repeat the sampling
process 10, 000 times.
sample_mean <- NA

for (i in 1:10000) {
sample <- sample(population, size = 8, replace = FALSE)
sample_mean[i] <- mean(sample)

}

par(mfrow = c(1, 1))
plot(density(sample_mean),

col = "blue", lwd = 3,
main = "Distribution of sample means"

)
abline(v = pop_mean, col = "red", lwd = 2)

3 4 5 6 7 8 9

0.
0

0.
1

0.
2

0.
3

0.
4

Distribution of sample means

N = 10000 Bandwidth = 0.1331

D
en

si
ty

average_sampling_distribution <- mean(sample_mean)
average_sampling_distribution

[1] 5.865863

round(pop_mean, 4)

[1] 5.8696

Let’s now look at the distribution of the sample mean as m
gets closer to N.

So far, m = 8. We now need a new simulation that adds a new step:
we need to vary the size of m. (Remember our population size, N, is
23)

rep <- 10000

The first loop varies m
for (m in 9:20) {

sample_mean <- NA # creating an object to store the results of the second loop

The second loop goes through the 10,000 simulations
for (i in 1:rep) {

we first get a random sample of size m from the population
sample <- sample(population, size = m, replace = FALSE)
and then calculate and store the sample mean
sample_mean[i] <- mean(sample)

}

finally, we plot the distribution of the 10,000 sample means for the relevant m
lines(density(sample_mean),

lwd = 3,
note that this next line of code varies the color of the line according to m
so that we can distinguish the different distributions
col = paste0("grey", 140 - (7 * m))

)
}

3 4 5 6 7 8 9

0.
0

0.
5

1.
0

1.
5

Distribution of sample means

N = 10000 Bandwidth = 0.1331

D
en

si
ty

The variance of the sample mean

The standard deviation of the sampling distribution gives us a
measure of uncertainty about the mean:
var_sample_mean <- sum((sample_mean - mean(sample_mean))^2) / (length(sample_mean))
se_sample_mean <- sqrt(var_sample_mean)
se_sample_mean

[1] 0.9367243

Now, we can calculate this because we created our own population.
This is not often the case (e.g., experiments). . .

Remember the formula for the variance of the sample mean for the
treatment group is:

Var(Y T) = σ2

m

We do not know σ2, we can estimate this quantity with the variance
of the assigned-to-treatment sample by:

σ̂2 = (1
m − 1)

m∑
i=1

(Yi − Ȳ T)2

Same with the variance of the sample mean for those units assigned
to control.

2. Estimation of the ATE
We can write a function to estimate the ATE (or simply use the
built-in function t.test).
diff_means <- function(y, x) {

Calculating difference in means
mean1 <- mean(y[x == 1], na.rm = T)
mean0 <- mean(y[x == 0], na.rm = T)
diff <- mean1 - mean0

Calculating number of observations
N <- length(na.omit(y))

Preparing output
res <- c(mean1, mean0, diff, N)
names(res) <- c("Mean 1", "Mean 0", "Difference", "N")

return(c(res))
}

To try our function, we will use the small dataset in Gerber & Green
(2012)
gg_data <- as.data.frame(cbind(

c(10, 15, 20, 20, 10, 15, 15),
c(15, 15, 30, 15, 20, 15, 30)

))
names(gg_data) <- c("Y_i0", "Y_i1")

We will need to “create” a treatment vector. . .
let's fix m=3 (units in the treatment group)
treat <- c(1, 1, 1, 0, 0, 0, 0)
gg_data$treat <- sample(treat, 7, replace = F)
gg_data$treat

[1] 1 1 0 0 1 0 0

. . . and a column with the “observed” outcomes
gg_data$observed <- ifelse(gg_data$treat == 1, gg_data$Y_i1, gg_data$Y_i0)
save(gg_data, file="gg_data.RData")

Let’s see how the complete data set looks now:
head(gg_data)

Y_i0 Y_i1 treat observed
1 10 15 1 15
2 15 15 1 15
3 20 30 0 20
4 20 15 0 20
5 10 20 1 20
6 15 15 0 15

mean of the treatment group
mean(gg_data$observed[gg_data$treat == 1])

[1] 16.66667

mean of the control group
mean(gg_data$observed[gg_data$treat == 0])

[1] 17.5

difference of means
mean(gg_data$observed[gg_data$treat == 1]) - mean(gg_data$observed[gg_data$treat == 0])

[1] -0.8333333

with our function
diff_means(gg_data$observed, gg_data$treat)

Mean 1 Mean 0 Difference N
16.6666667 17.5000000 -0.8333333 7.0000000

Now, we can also estimate the same quantity using a regression:
lm_robust(observed ~ treat, data = gg_data)

Estimate Std. Error t value Pr(>|t|) CI Lower
(Intercept) 17.5000000 1.443376 12.1243557 6.743204e-05 13.789685
treat -0.8333333 2.204793 -0.3779645 7.209712e-01 -6.500934

CI Upper DF
(Intercept) 21.210315 5
treat 4.834267 5

But notice that we are not relying on the assumptions of OLS
regression. This is just math. . . the way β is estimated.

How can we get a distribution of the difference of means?

We can do this with a simulations. For each simulation,

I First: We will need to “create” a random treatment vector and
generate the column with the associated observed outcomes.

I Second: We will have to calculate the difference between the
treatment and control means (by hand or using our new
function).

How can we get a distribution of the difference of means?

We can do this with a simulations. For each simulation,

I First: We will need to “create” a random treatment vector and
generate the column with the associated observed outcomes.

I Second: We will have to calculate the difference between the
treatment and control means (by hand or using our new
function).

1.
gg_data$treat <- sample(treat, 7, replace = F)
gg_data$observed <- ifelse(gg_data$treat == 1, gg_data$Y_i1, gg_data$Y_i0)

2.
diff_means(gg_data$observed, gg_data$treat)

Mean 1 Mean 0 Difference N
20.00 16.25 3.75 7.00

we should store this! so,
dm <- diff_means(gg_data$observed, gg_data$treat)
dm

Mean 1 Mean 0 Difference N
20.00 16.25 3.75 7.00

but we only want the third element!
dm <- diff_means(gg_data$observed, gg_data$treat)[3]
dm

Difference
3.75

Now let’s put this in a loop that allows us to repeat the process
10, 000 times (and saves the dom for each). . .
dm <- NA # creating a placeholder to store all our doms...

for (i in 1:10000) {

1.
gg_data$treat_sim <- sample(treat, 7, replace = F)
gg_data$observed <- ifelse(gg_data$treat_sim == 1, gg_data$Y_i1, gg_data$Y_i0)

2.
dm[i] <- diff_means(gg_data$observed, gg_data$treat_sim)[3]

}

Finally, let’s plot the distribution
hist(dm, col = "blue", main = "Histogram of Difference of Means \n for GGdata")

Histogram of Difference of Means
 for GGdata

dm

F
re

qu
en

cy

0 5 10

0
50

0
10

00
15

00
20

00

3. Standard Error for the ATE

1. Standard error for the difference in means

1. Standard error for the difference in means

I The difference in means is an unbiased estimator of the true
ATE. However, by chance, in some realizations of our sample
that estimate might be off the true ATE.

I The SE tells us the likely size of the amount off.

A conservative formula for the ŜE for the ÂTE

ŜE (ÂTE) =

√
V̂ar(Yi (0))

N − m + V̂ar(Yi (1))
m

We are going to estimate the SE for the difference in means using
the same data.
true_ate <- mean(gg_data$Y_i1) - mean(gg_data$Y_i0)
true_ate

[1] 5

est_ate <- mean(gg_data$observed[gg_data$treat == 1]) - mean(gg_data$observed[gg_data$treat == 0])
est_ate

[1] 10

generating empty dataframe to put the results
ate <- as.data.frame(matrix(NA, 10000, 2))
names(ate) <- c("estimated_ate", "estimated_se_ate")

sampling
for (i in 1:10000) {

generating treatment vector for this replicate
gg_data$treat_sim <- 0
gg_data$treat_sim[sample(1:7, 2, replace = F)] <- 1

treat_mean <- mean(gg_data$Y_i1[gg_data$treat_sim == 1])
treat_var <- var(gg_data$Y_i1[gg_data$treat_sim == 1])

control_mean <- mean(gg_data$Y_i0[gg_data$treat_sim == 0])
control_var <- var(gg_data$Y_i0[gg_data$treat_sim == 0])

ate[i, 1] <- treat_mean - control_mean
ate[i, 2] <- sqrt(treat_var / 2 + control_var / 5)

}

0

5

10

0 5 10 15
Estimated ATE

P
er

ce
nt

I How could we use this graph to get the SE of the estimated
ATE?

The SE of the estimated ATE is the standard deviation of this sampling distribution:
se_sampling <- sd(ate[, 1])
se_sampling

[1] 4.650395

I But in any given experiment, we don’t have the sampling
distribution. Instead, we can estimate the SE (using the
conservative formula)

treat_var <- var(gg_data$Y_i1[gg_data$treat == 1])
control_var <- var(gg_data$Y_i0[gg_data$treat == 0])
est_se_cons <- sqrt(treat_var / 2 + control_var / 5)
est_se_cons

[1] 6.390097

Comparing the true standard error to the conservative formula
print(c(se_sampling, est_se_cons))

[1] 4.650395 6.390097

4. Blocked randomized experiments

Let’s use the data from yesterday, with the example of water
sanitazing devices. We had
table(data$complete.rand, data$female)

0 1
0 201 199
1 99 101

Block randomization using randomizr

data$block.rand <- block_ra(blocks = data$female, prob_each = c(.75, .25))

table(data$block.rand, data$female)

0 1
0 225 225
1 75 75

data$block.obs <- with(data, Y1 * block.rand + Y0 * (1 - block.rand))

head(data)

ID village female Y0 Y1 complete.rand complete.obs block.rand block.obs
1 1 vill 01 1 19 12 0 19 0 19
2 2 vill 01 1 20 13 1 13 0 20
3 3 vill 01 1 11 4 0 11 1 4
4 4 vill 01 1 9 2 0 9 0 9
5 5 vill 01 1 28 21 1 21 0 28
6 6 vill 01 1 16 9 1 9 0 16

How can we analyze these data?

I When analyzing data from blocked randomized experiments,
we may ask different questions:
I For instance, what is the ATE among women? Does the ATE

vary by gender?
I We may, instead, be interested in the overall ATE.

I Since we conducted a complete RA at the block level, we can
estimate the ATE for each one of the groups created by our
blocking variables

Recall
effect.male <- -2
effect.female <- -7

female <- filter(data, data$female == 1)
dom_fem <- mean(female$block.obs[female$block.rand == 1]) - mean(female$block.obs[female$block.rand == 0])
dom_fem

[1] -6.888889

male <- filter(data, data$female == 0)
dom_male <- mean(male$block.obs[male$block.rand == 1]) - mean(male$block.obs[male$block.rand == 0])
dom_male

[1] -2.408889

I Now, we can also estimate the overall ATE by estimating
block-level ATEs.

I We then need to ask, how do we want to weight each
block-level ATE in order to obtain the overal ATE?

I One way is to weight by the block size:
block_female <- sum(data$female == 1) / length(data$ID)
block_male <- sum(data$female == 0) / length(data$ID)

ate_overall <- block_female * dom_fem + block_male * dom_male
ate_overall

[1] -4.648889

var_fem_treat <- var(data$block.obs[data$block.rand == 1 & data$female == 1])
var_fem_control <- var(data$block.obs[data$block.rand == 0 & data$female == 1])
var_male_treat <- var(data$block.obs[data$block.rand == 1 & data$female == 0])
var_male_control <- var(data$block.obs[data$block.rand == 0 & data$female == 0])

se_est_fem <- sqrt(var_fem_control / sum(data$block.rand == 0 & data$female == 1) + var_fem_treat / sum(data$block.rand == 1 & data$female == 1))
se_est_male <- sqrt(var_male_control / sum(data$block.rand == 0 & data$female == 0) + var_male_treat / sum(data$block.rand == 1 & data$female == 0))

se_est_all <- sqrt((se_est_fem^2 * block_female^2) + (se_est_male^2 * block_male^2))
se_est_all

[1] 1.035855

We could have done this using the difference_in_means
command from estimatr

difference_in_means(block.obs ~ block.rand, blocks = female, data = data)

Design: Blocked
Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper

block.rand -4.648889 1.035855 -4.487971 8.632315e-06 -6.68326 -2.614518
DF

block.rand 596

(c(ate_overall, se_est_all))

[1] -4.648889 1.035855

Imagine we forget that we blocked:
lm_robust(block.obs ~ block.rand, data = data)

Estimate Std. Error t value Pr(>|t|) CI Lower
(Intercept) 19.062222 0.5233487 36.42356 6.377196e-154 18.034397
block.rand -4.648889 1.0594816 -4.38789 1.352959e-05 -6.729646

CI Upper DF
(Intercept) 20.090047 598
block.rand -2.568132 598

(c(ate_overall, se_est_all))

[1] -4.648889 1.035855

We could also get to this quantity using a regression with block
dummies (Least Squares Dummy Variables) or with weights (IPW):
table(data$block.rand, data$female)

0 1
0 225 225
1 75 75

Block dummies (LSDV):
the weigths used here are: p_j * (1 - p_j) * n_j)
lm_robust(block.obs ~ block.rand + female, data = data)

Estimate Std. Error t value Pr(>|t|) CI Lower
(Intercept) 20.235556 0.7262745 27.862133 4.391278e-110 18.809192
block.rand -4.648889 1.0433060 -4.455921 9.976628e-06 -6.697885
female -2.346667 0.9058405 -2.590596 9.815024e-03 -4.125688

CI Upper DF
(Intercept) 21.6619191 597
block.rand -2.5998927 597
female -0.5676453 597

(c(ate_overall, se_est_all))

[1] -4.648889 1.035855

within_block <-
data %>%
group_by(female) %>%
summarise(

block_ATE_est = mean(block.obs[block.rand == 1]) - mean(block.obs[block.rand == 0]),
n_j = n(),
p_j = mean(block.rand),
sample_weight = n_j,
fe_weight = p_j * (1 - p_j) * n_j

) %>%
divide by the sum of the weights
mutate(

sample_weight = sample_weight / sum(sample_weight),
fe_weight = fe_weight / sum(fe_weight)

)

head(within_block)

A tibble: 2 x 6
female block_ATE_est n_j p_j sample_weight fe_weight
<dbl> <dbl> <int> <dbl> <dbl> <dbl>

1 0 -2.41 300 0.25 0.5 0.5
2 1 -6.89 300 0.25 0.5 0.5

within_block %>%
summarize(

LDSV = weighted.mean(block_ATE_est, fe_weight),
Blocked_DIM = weighted.mean(block_ATE_est, sample_weight)

)

A tibble: 1 x 2
LDSV Blocked_DIM

<dbl> <dbl>
1 -4.65 -4.65

IPW:

data$cond_prob <- ifelse(data$block.rand == 1, 0.25, 0.75)
lm_robust(block.obs ~ block.rand, weight = 1 / cond_prob, data = data)

Estimate Std. Error t value Pr(>|t|) CI Lower
(Intercept) 19.062222 0.5233487 36.42356 6.377196e-154 18.034397
block.rand -4.648889 1.0594816 -4.38789 1.352959e-05 -6.729646

CI Upper DF
(Intercept) 20.090047 598
block.rand -2.568132 598

(c(ate_overall, se_est_all))

[1] -4.648889 1.035855

