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Estimation

◾ We have already talked about the fundamental problem of causal 
inference.

◾ We can use sample data (statistics) to estimate parameters (like the 
Average Treatment Effect).



A simulation in R: sample mean as an 
unbiased estimator of the population 
mean

First we will need to “create” a population, a box of tickets

population <- c(4,5,7,12,7,8,9,-3,5,8,9,3,2,3,4,6,10,4,6,7,8,9,2) 

N <- length(population) # number of observations in the population

N

## [1] 23

pop_mean <- mean(population) # population mean

pop_mean 

## [1] 5.869565

pop_sd <- sd(population) # population standard deviation

pop_sd

## [1] 3.293304



We will draw several random samples of 8 observations (  ) each without
replacement

s1 <- sample(population, size=8, replace = FALSE) 

s2 <- sample(population, size=8, replace = FALSE) 

s3 <- sample(population, size=8, replace = FALSE) 

s4 <- sample(population, size=8, replace = FALSE) 

samples <- rbind(s1, s2, s3, s4) 

samples

##    [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] 
## s1    5    8    7    6    2    5    9    4 
## s2    7    7    9    4    3    8    7    2 
## s3    4    4    9    2    7    8   12    2 
## s4    4    7    8    8    2    7    6    6

m



Remember the population mean: 5.8695652

And the means of the samples

apply(samples, MARGIN=1, FUN=mean) 

##    s1    s2    s3    s4  
## 5.750 5.875 6.000 6.000

By chance each given sample mean may be a little higher or lower than the 
population mean.

How can we use R to show that the sample mean is an unbiased estimator of 
the population mean?



For this, we will write a simulation. We will repeat the sample process 
times.

sample_mean <- NA

for (i in 1:10000){ 

  sample <- sample(population, size=8, replace = FALSE) 

  sample_mean[i] <- mean(sample) 

}

10, 000



par(mfrow=c(1,1)) 

plot(density(sample_mean), col="blue", lwd=3, 

main="Distribution of sample means") 

abline(v=pop_mean, col="red", lwd=2)

average_sampling_distribution<- mean(sample_mean) 

round(average_sampling_distribution,2)  

## [1] 5.86

round(pop_mean, 2)

## [1] 5.87



Let’s now look at the distribution of 
the sample mean as  gets closer to 
N.

So far,  . We now need a new simulation that adds a new step: we 
need to vary the size of m. (Remember our population size, N, is 23)

m

m = 8



rep <- 10000

# The first loop varies m

for (m in 9:20){ 

  sample_mean <- NA #creating an object to store the results of the second loop

# The second loop goes through the 10,000 simulations

  for (i in 1:rep){ 

#we first get a random sample of size m from the population

    sample <- sample(population, size=m, replace = FALSE) 

#and then calculate and store the sample mean

    sample_mean[i] <- mean(sample) 

  } 

#finally, we plot the distribution of the 10,000 sample means for the relevant m

lines(density(sample_mean), lwd=3, 

#note that this next line of code varies the color of the line according to m 

#so that we can distinguish the different distributions

col=paste0("grey",140-(7*m))) 

}

What do we expect? Why?





Remember the formula for the variance of the sample mean for the treatment 
group is:

But we do not know  (it is a parameter). But we can estimate this quantity 
with the variance of the assigned-to-treatment sample by:

Same with the variance of the sample mean for those units assigned to 
control. These are the analytic formulas… But we could estimate via 
bootstrapping.
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1. Variance of the sample mean

2. The bootstrap

◾ 2a. CLT: Distribution of the bootstap mean as a function of sample size

◾ 2b. Comparing the estimated SE using the analytic formula and the 
boostrap



1. The variance of the sample mean

First we need a box to sample from.

pop1 <- rnorm(50, 0, 5) # draw 50 units from normal dist.

Let’s see what is the average of this population

mean(pop1)

## [1] -0.6520966

◾ We will sample 25 units from this population without replacement (as in 
most experiments)

◾ We will repeat this process 10,000 times



sample_means <- NA #Vector placeholder

for (i in 1:10000){ 

  sample_means[i] <- mean(sample(pop1, 25, replace=F)) 

} 

head(sample_means)

## [1] -1.3181017  0.2245676 -1.6005098  0.1128294 -1.8807701 -1.7814493



mean(sample_means)

## [1] -0.6481124

var(sample_means)

## [1] 0.6491997



2. The bootstrap

More often, we do not observe the full potential outcomes schedule for our 
population. We are now going to use the sample values for a study conducted 
by Dunnign and Harrison, where treatment is co-ethnic cousin (

 ). This will be our box, the “bootstrap population”.

Let’s plot the empirical distribution of responses in the treatment group.

treat_assign = 1



We will use the bootstrap to investigate the properties of different sampling 
procedures.

1. Take the sample values as the population;

2. Draw a sample from this population (box) with replacement, using the 
sampling procedure we want to analyze; save the sample statistics 
(e.g. the mean). This is a “bootstrap replicate.”

3. Repeat step (2) many times (say, 10,000 times).

4. Plot the distribution of the saved statistics across all the bootstrap 
replicates. This gives us a good glimpse of the sampling distribution of 
the statistic of interest.



# We first need to define the number of units we will draw from the box 

# (with replacement). 

# For the first example, let's take N=5

N <- 5

# If we wanted to do step (2) once, we would sample from the box N times with replacement

boot_sample <- sample(box$box, N, replace=T)  

# And then take the statistic of interest for this bootstrap sample, here the mean. 

mean(boot_sample)

## [1] 5

But we want to do this many times— 10,000 times! What can we do?



We write a for loop that repeats this sampling procedure 10,000 times:

boot_reps <- 10000 # number of bootstrap replicates we will repeat step (2) for

boot_mean <- NA # placeholder vector for the results

for (i in 1:boot_reps){ 

  boot_sample <- sample(box$box, N, replace=T)  

  boot_mean[i] <- mean(boot_sample) 

}



We will now repeat this procedure, varying the size of the bootstrap sample, 
several times. We can write a function which does the bootstraps, and plots a 
histogram for their mean.

Our function will require - the data, - the number of bootstrap replicates, - 
the number of observations to be sampled from the box in each replicate - 
the binwidth to be used for the histogram.

It will sample N units with replacement and get the mean for that sample



bootstrap_mean <- function(data, replicates=10000, N, bin, title="",  

xlab="", ylab="", xmax, xmin){ 

  boot_mean <- NA #plaaceholder vector

  for (i in 1:replicates){ 

# we sample N units from the box with replacement

    boot_sample <- sample(data, N, replace=T) 

# and save their mean

    boot_mean[i] <- mean(boot_sample) 

  } 

  m <- ggplot(as.data.frame(boot_mean), aes(x=boot_mean)) 

# First we plot a histogram with the results

  m + geom_histogram(aes(y = ..density..), alpha=.5, binwidth=bin) +

# and overlay a line with the density of a normal distribution with mean equal to the mean

# of the bootstrap means and sd equal to the sd of the bootstrap means.

stat_function(fun=dnorm,  

args=list(mean=mean(boot_mean), sd=sd(boot_mean)), col="blue", size=1) + 

# and we add a vertical line for the mean of the box

geom_vline(xintercept = mean(box$box), col="red", size=1) + 

# limits for x axis

scale_x_continuous(limits = c(xmin, xmax)) + 

# and labels

labs(title=title,  x=xlab, y=ylab) + theme_bw() 

}



Now we will run the bootstrap varying N.



N = 5

bootstrap_mean(data=box$box, replicates=10000, N=5, bin=.035,  

# title="N=5", 

xmin=1, xmax=7, 

xlab="Mean - Respondent wants to vote for candidate (1-7 scale)",  

ylab="Density")



N = 25

bootstrap_mean(data=box$box, replicates=10000, N=25, bin=.035,  

# title="N=25", 

xmin=1, xmax=7, 

xlab="Mean - Respondent wants to vote for candidate (1-7 scale)",  

ylab="Density")



N = 100

bootstrap_mean(data=box$box, replicates=10000, N=100, bin=.035,   

# title="N=100",

xmin=1, xmax=7, 

xlab="Mean - Respondent wants to vote for candidate (1-7 scale)",  

ylab="Density")



Now, let’s compare the  that we obtain from the analytic formula and the 
bootstrap:

◾ The analytic formula of the  for the sample mean in the treatment 
group: 

# We first need an unbiased estimator of the variance: 

est.var.analy <- var(box) # denominator : (n-1)

# Then we plug it into the analytic formula of the SE (est.)

se_analy = sqrt(est.var.analy/(nrow(box))) 

se_analy

##           box 
## box 0.1495527

◾ Now, how can we get the SE from the bootstrap replicates?
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# Bootstrap: 

N<-136

replicates <- 10000

boot_mean <- NA #plaaceholder vector

  for (i in 1:replicates){ 

# we sample N units from the box with replacement

    boot_sample <- sample(box$box, N, replace=T) 

# and save their mean

    boot_mean[i] <- mean(boot_sample) 

  } 

boot.se<-sd(boot_mean) 

ses<- c(se_analy,boot.se) 

names(ses)<-c("Analytic Formula","Bootstrap") 

ses

## Analytic Formula        Bootstrap  
##        0.1495527        0.1469314

In this case, the bootstrap gives the same answer as the analytic formula 
because the latter is correct for i.i.d. sampling, and here we are building i.i.d. 
sampling into the bootstrap routine.



3. The difference of two means

We can write a function to estimate the difference in means. As I mentioned 
on Monday, a function is composed by: i) body, ii) arguments, and iii) 
environment (usually Global unless otherwise specified)

diff_means <- function(y, x){  

# Calculating difference in means

  mean1 <- mean(y[x==1], na.rm=T) 

  mean0 <- mean(y[x==0], na.rm=T) 

  diff <- mean1 - mean0 

# Calculating number of observations

  N <- length(na.omit(y)) 

# Preparing output

  res <- c(mean1, mean0, diff, N) 

names(res) <- c("Mean 1", "Mean 0", "Difference", "N") 

return(c(res)) 

}

Now, let’s explore the components of the function we just created:

body(diff_means)

## { 
##     mean1 <- mean(y[x == 1], na.rm = T) 
##     mean0 <- mean(y[x == 0], na.rm = T) 
##     diff <- mean1 - mean0 
##     N <- length(na.omit(y)) 
##     res <- c(mean1, mean0, diff, N) 
##     names(res) <- c("Mean 1", "Mean 0", "Difference", "N") 
##     return(c(res)) 
## }

formals(diff_means)

## $y 
##  
##  
## $x

environment(diff_means)

## <environment: R_GlobalEnv>





To try our function, we will use the small dataset in Gerber & Green (2012)

gg_data <- as.data.frame(cbind(c(10,15,20,20,10,15,15),  

c(15,15,30,15,20,15,30))) 

names(gg_data) <- c("Y_i0", "Y_i1") 

save(gg_data, file="gg_data.Rda")



We will need to “create” a treatment vector…

# let's fix m=3 (units in the treatment group)

treat <- c(1, 1, 1, 0, 0, 0, 0) 

gg_data$treat <- sample(treat, 7, replace=F) 

gg_data$treat

## [1] 1 0 0 1 0 1 0

…and a column with the “observed” outcomes

gg_data$observed <- ifelse(gg_data$treat==1, gg_data$Y_i1, gg_data$Y_i0)



Let’s see how the complete data set looks now:

head(gg_data)

##   Y_i0 Y_i1 treat observed 
## 1   10   15     1       15 
## 2   15   15     0       15 
## 3   20   30     0       20 
## 4   20   15     1       15 
## 5   10   20     0       10 
## 6   15   15     1       15



# mean of the treatment group

mean(gg_data$observed[gg_data$treat==1])

## [1] 15

# mean of the control group

mean(gg_data$observed[gg_data$treat==0])

## [1] 15

# difference of means

mean(gg_data$observed[gg_data$treat==1]) - mean(gg_data$observed[gg_data$treat==0])

## [1] 0

# with our function

diff_means(gg_data$observed, gg_data$treat)

##     Mean 1     Mean 0 Difference          N  
##         15         15          0          7



How can we get a distribution of the 
difference of means?

We can do this with a simulations. For each simulation,

◾ First: We will need to “create” a random treatment vector and generate 
the column with the associated observed outcomes.

◾ Second: We will have to calculate the difference between the treatment 
and control means (by hand or using our new function).



# 1.

gg_data$treat <- sample(treat, 7, replace=F) 

gg_data$observed <- ifelse(gg_data$treat==1, gg_data$Y_i1, gg_data$Y_i0) 

# 2.

diff_means(gg_data$observed, gg_data$treat)

##     Mean 1     Mean 0 Difference          N  
##  21.666667  16.250000   5.416667   7.000000

# we should store this! so,

dm <- diff_means(gg_data$observed, gg_data$treat) 

dm

##     Mean 1     Mean 0 Difference          N  
##  21.666667  16.250000   5.416667   7.000000

# but we only want the third element!

dm <- diff_means(gg_data$observed, gg_data$treat)[3] 

dm

## Difference  
##   5.416667



Now let’s put this in a loop that allows us to repeat the process  times 
(and saves the dom for each)…

dm <- NA #creating a placeholder to store all our doms...

for (i in 1:10000){ 

# 1.

    gg_data$treat <- sample(treat, 7, replace=F) 

    gg_data$observed <- ifelse(gg_data$treat==1, gg_data$Y_i1, gg_data$Y_i0) 

# 2.

    dm[i] <- diff_means(gg_data$observed, gg_data$treat)[3] 

    }

10, 000



Finally, let’s plot the distribution

hist(dm, col="blue", main="Histogram of Difference of Means \n for GGdata")



4. Standard Error for the ATE and 
hypothesis testing

1. Standard error for the difference in means

2. Hypothesis testing

◾ 2a. T-test

◾ 2b. Randomization inference



1. Standard error for the difference in 
means

◾ The difference in means is an unbiased estimator of the true ATE. 
However, by chance, in some realizations of our sample that estimate 
might be off the true ATE.

◾ The SE tells us the likely size of the amount off.



A conservative formula for the  for 
the 

This formula assumes independence and sampling with replacement.
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We are going to estimate the SE for the difference in means using the data 
from Chattopadhyay and Duflo (2004) referenced in Gerber and Green 
(2012).

# the data

gg_data <- as.data.frame(cbind(c(10,15,20,20,10,15,15),  

c(15,15,30,15,20,15,30))) 

names(gg_data) <- c("Y_i0", "Y_i1") 

true_ate<-mean(gg_data$Y_i1) - mean(gg_data$Y_i0)



# generating empty dataframe to put the results

ate <- as.data.frame(matrix(NA, 10000, 2)) 

names(ate) <- c("estimated_ate", "estimated_se_ate") 

# sampling

for (i in 1:10000){ 

# generating treatment vector for this replicate

  gg_data$treat <- 0

  gg_data$treat[sample(1:7, 2, replace=F)]  <- 1

  treat_mean <- mean(gg_data$Y_i1[gg_data$treat==1]) 

  treat_var <- var(gg_data$Y_i1[gg_data$treat==1]) 

  control_mean <- mean(gg_data$Y_i0[gg_data$treat==0]) 

  control_var <- var(gg_data$Y_i0[gg_data$treat==0]) 

  ate[i,1] <- treat_mean - control_mean 

  ate[i,2] <- sqrt(treat_var/2 + control_var/5)  

}



Let’s explore how this matrix looks like:

head(ate)

##   estimated_ate estimated_se_ate 
## 1          16.0         1.870829 
## 2           9.5         7.599342 
## 3           0.5         2.783882 
## 4           7.5         7.826238 
## 5           2.5         2.958040 
## 6           0.0         1.581139



◾ What should be the title of this figure?

◾ How could we use this graph to get the SE of the estimated ATE?



# The SE of the estimated ATE is the standard deviation of this sampling distribution:

se_sampling<-sd(ate[,1]) 

se_sampling

## [1] 4.627147



◾ Notice, the estimated SE will also have a distribution.

What should the average of the estimated SEs?



# Comparing the true standard error to the conservative formula

se_est<-mean(ate[,2]) 

print(c(se_sampling, se_est))

## [1] 4.627147 4.637367



2. Hypothesis testing

# generating treatment vector for a given experiment

gg_data$treat <- c(1, 0, 0, 0, 0, 0, 1) 

# getting observed outcomes

gg_data$observed <- ifelse(gg_data$treat==1, gg_data$Y_i1, gg_data$Y_i0) 

# ate

ATE <- mean(gg_data$observed[gg_data$treat==1]) - mean(gg_data$observed[gg_data$treat==0]) 

ATE

## [1] 6.5

◾ What is a p-value?



2a. T-test

treated <- gg_data$observed[gg_data$treat==1] 

treated

## [1] 15 30

var1 <- sum((treated - mean(treated))^2) / (length(treated) - 1) 

var1

## [1] 112.5

not_treated <- gg_data$observed[gg_data$treat==0] 

not_treated

## [1] 15 20 20 10 15

var0 <- sum((not_treated - mean(not_treated))^2) / (length(not_treated) - 1) 

var0

## [1] 17.5

estimated_se <- sqrt(var1/length(treated) + var0/length(not_treated)) 

estimated_se 

## [1] 7.729812



# converting to standard units: Why is it ATE - 0? 

t_stat <- (ATE - 0) / estimated_se 

t_stat

## [1] 0.8409001

# To be able to get the right Student t Distribution, we need to calculate

# the degrees of freedom (Satterthwaite)

df <- (var1/length(treated) + var0/length(not_treated))^2 /

((var1/length(treated))^2 / (length(treated) - 1) +

(var0/length(not_treated))^2 / (length(not_treated) - 1)) 

df

## [1] 1.127225



# Overlaying the t_stat to the student t distribution

ggplot(data.frame(x = c(-5, 5)), aes(x)) +

stat_function(fun=dt, args=list(df=df, ncp=0), col="blue", size=1) + 

geom_vline(xintercept = mean(t_stat), col="red", size=1.25) 



# One tailed p-value

pt(t_stat, df=df, ncp=0, lower.tail=F)

## [1] 0.2708243

# Two tailed p-value

pt(-t_stat, df=df, ncp=0, lower.tail=T) + pt(t_stat, df=1.12, ncp=0, lower.tail=F)

## [1] 0.5419946



2b. Randomization inference

To get all the possible treatment vectors, we will generate 10000 differente 
ones…

fake_treats <- matrix(NA, 10000, 7) 

for (i in 1:10000){ 

fake_treats[i,] <- sample(gg_data$treat, 7, replace=F) 

}

… and then only keep the unique ones

fake_treats <- unique(fake_treats)



Now we need to calculate the ATE for each of these possible randomizations. 
For that, we will need a loop

rand_ate <- NA # placeholder vector for results

for (i in 1:nrow(fake_treats)){ # for each of the fake treatment vectors

  mean_treat <- mean(gg_data$observed[fake_treats[i,]==1]) 

  mean_control <- mean(gg_data$observed[fake_treats[i,]==0]) 

# calculating ATE for this randomization

  rand_ate[i] <- mean_treat - mean_control 

}



Now we can plot the distribution of the randomization ATEs

Distribution of randomization ATEs 



And we can get the p-value

# One tailed

sum(rand_ate>=ATE)/length(rand_ate)

## [1] 0.2380952

# Two tailed

sum(abs(rand_ate)>=ATE)/length(rand_ate)

## [1] 0.3809524


