Why use an Average Treatment Effect? How to do statistical inference for average treatmente effects?

Jake Bowers $^{1},^{2}$

EGAP Learning Days 4: Chile ¹Political Science & Statistics & NCSA @ University of Illinois

 2 White House Social and Behavioral Sciences Team

jwbowers@illinois.edu - http://jakebowers.org

Why randomize?

To facilitate interpretable statements about comparisons (i.e. to remove confounds, to decide on intervention).

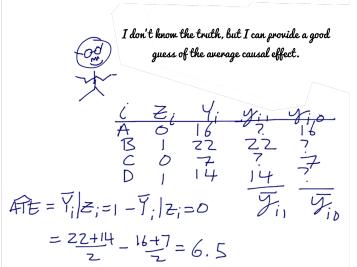
To facilitate interpretable statements about information (i.e. to justify hypothesis tests and estimators.)

What does it mean to say that $E(\widehat{\operatorname{ATE}}) = \operatorname{ATE}$

Confidence Intervals

Recall the ATE

Like hypotheses and imputation, the ATE can help with the fundamental problem of causal inference.



3/16

$E(\widehat{\text{ATE}}) = \text{ATE}$ means that $\widehat{\text{ATE}}$ is unbiased for ATE.

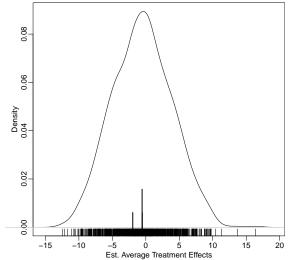
```
## Bias refers to a relationship between the repeated operation of a proce-
dure and a truth. So we have to invent a truth.
dat$y0<-dat$rpre ## create true potential outcomes to control
trueATE<-.2 ## posit a true average treatment effect
dat$y1<-dat$y0+trueATE+rnorm(nrow(dat),mean=0,sd=sd(dat$y0)) ## create poten-
dat$obsy<-with(dat, z*v1+(1-z)*v0 ) ## what we observe</pre>
trueATE<-with(dat,mean(y1)-mean(y0))</pre>
estATE<-coef(lm(obsy~z,dat))["z"] ## same as a mean difference on obsy</pre>
## Define two functions: (1) calc est ATE and (2) re-assign treatment
makeNewObsvAndEst<-function(thez){</pre>
    newobsy<-with(dat, thez*yl+(1-thez)*y0 )</pre>
    lmATE<-coef(lm(newobsy~thez))[["thez"]]</pre>
    return(c(lmATE=lmATE))
makeNewZ<-function(thez.theb){</pre>
        unsplit(lapply(split(thez,theb),sample),theb)
## Does the pair of functions do what we want them to do?
replicate(5,makeNewObsyAndEst(makeNewZ(dat$z,dat$s)))
    IMATE IMATE IMATE IMATE
 0 741860 -1 862096 -5 509230 0 545759 -5 990799
```

```
nsims <- 1000
set.seed(20150313)
```

```
## For many of the possible ways to run the experiment, calculate this mean difference
## dist.sample.est<-replicate(nsims,makeNewObsyAndEst(makeNewObsyAndEst(makeNewZ(da
## on your unix-based machine (mac or linux):
require(parallel)
ncores <- detectCores()</pre>
dist.sample.est <- simplify2array(mclapply(1:nsims, function(i) {
    makeNewObsyAndEst(makeNewZ(dat$z, dat$s))
}, mc.cores = ncores))
c(EestATE = mean(dist.sample.est), ATE = trueATE, estATE = estATE)
   FestATE ATE estATE.z
-0.5250059 -0.5534720 -1.9511192
## And recall that we have simulation error on the order of 1/sqrt(nsims)
SEsims <- sqrt(var(dist.sample.est)/nsims)</pre>
SEsims
```

[1] 0.1397582

What does it mean to say we have an unbiased estimator?



What does it mean to say that $E(\widehat{\mathsf{ATE}}) = \mathsf{ATE}$

Confidence Intervals

Confidence Interval Ingredients

$$\mathrm{CI}(\mathrm{ATE}) = \widehat{\mathrm{ATE}} \pm z_{\alpha/2} \mathrm{SE}(\widehat{\mathrm{ATE}})$$

where, $z_{\alpha/2}$ for $\alpha=.05$ is 1.96.

Standard Errors for the Estimated ATE

What is a standard error in the context of a randomized experiment? Here, pretending that the randomization was simple and not blocked.

```
## See the Dunning / Freedman, Pisani, Purves derivation
 v0 <- dat$v0
vl <- dat$vl
7 <- dat$z
Y < -Z * V1 + (1 - Z) * V0
V <- var(cbind(y0, y1))</pre>
varc <- V[1, 1]
vart <- V[2, 2]
 covtc <- V[1. 2]
N <- length(v0)
n <- sum(Z)
m <- N - n
varestATE <-((N - n)/(N - 1)) * (vart/n) + ((N - m)/(N - 1)) * (varc/m) + (2/(N - 1)) * (varc/
 ## And the *feasible* version (where we do not observe the potential outcomes)
varYc <- var(Y[Z == 0])
varYt <- var(Y[Z == 1])</pre>
 fvarestATE <- (N/(N - 1)) * ((varYt/n) + (varYc/m))
```

Different Confidence Intervals

```
theiidci <- confint(lm1, level = 0.95, parm = "Z")
feasCI <- estATE + c(1, -1) * qnorm(0.05/2) * sqrt(fvarestATE)
bestCI <- estATE + c(1, -1) * qnorm(0.05/2) * sqrt(varestATE)</pre>
```

rbind(feasCI, theiidci, bestCI)

2.5 % 97.5 % feasCI -14.78928 10.887046 Z -14.99793 11.095694 bestCI -12.99617 9.093936

Which is better?

A good test casts doubt on the truth rarely.

A good confidence interval contains the truth at least 100α % of the time. (Because a confidence interval is a collection of hypotheses against which we have little information to argue. A confidence interval is collection of unsurprising hypotheses.)

Checking Coverage

```
makeFeasibleSE <- function(y, z) {</pre>
    varYc <- var(v[z == 0])</pre>
    varYt <- var(v[z == 1])
    N <- length(v)
    stopifnot(N == length(z)) ## a test of the code
    fvarestATE <- (N/(N - 1)) * ((varYt/n) + (varYc/m))
    return(fvarestATE)
makeCIs <- function(v, thez) {</pre>
    lm1 < - lm(v ~ thez)
    estATE <- coef(lm1)["thez"]</pre>
    theiidci <- confint(lm1, level = 0.95, parm = "thez")</pre>
    fvarestATE <- makeFeasibleSE(y = y, z = thez)</pre>
    thefeasci <- estATE + c(1, -1) * qnorm(0.05/2) * sqrt(fvarestATE)
    truthinIIDci <- 0 >= min(theiidci) & 0 <= max(theiidci)</pre>
    truthinFeasci <- 0 >= min(thefeasci) & 0 <= max(thefeasci)
    return(c(truthinIIDci = truthinIIDci, truthinFeasci = truthinFeasci))
makeCIs(v = Y, thez = sample(Z))
 truthinTIDci truthinFeasci
                                                                       Average Treatment Effects 13/16
                        TRUE
         TRUE
```

Checking Coverage

```
set.seed(20160509)
nsims <- 10000
coverageCheck <- simplify2array(mclapply(1:nsims, function(i) {
    makeCIs(y = Y, thez = sample(Z))
}, mc.cores = ncores))
## coverageCheck<-replicate(10000, makeCIs(y=Y,thez=sample(Z))) ##makeNewZ(Z,Y)))
apply(coverageCheck, 1, mean)
truthinIIDci truthinFeasci
    0.9434    0.9398</pre>
```

What is unbiasedness? Why do we care? How would we assess bias? What is a confidence interval? How would we assess coverage?