Covariate Adjustment and Statistical Power

Tara Slough

EGAP Learning Days X

Covariate Adjustment

- Covariate adjustment = "controlling" for variables in multiple regression.
- Regression model without covariate adjustment:

$$Y_i = \beta_0 + \beta_1 Z_i + \epsilon_i \tag{1}$$

Regression model with covariate adjustment

$$Y_i = \beta_0 + \beta_1 Z_i + \beta_2 X_i + \epsilon_i \tag{2}$$

 $ightharpoonup Z_i$ is the treatment, X_i is a covariate

Justification for "controls" in observational research

- ▶ In observational research (not quasi-experimental):
 - ▶ Some $X_1 \rightarrow Z$ and $X_1 \rightarrow Y$
 - We care about estimating the causal effect of Z, so we need to adjust for X_1
 - ▶ But there may be some unobserved/unmeasured $u_1 \rightarrow Z$ and $u_1 \rightarrow Y$.
 - We can't control for u₁ if we can't observe/measure it. This induces omitted variable bias.
- ► In experimental research:
 - ▶ By random assignment, $Z \perp X$. It still is the case that $X \rightarrow Y$
 - **>** By random assignment, $Z \perp u_1$. It still is the case that $u_1 \rightarrow Y$

Justification for covariate adjustment in experiments

- Recall that:
 - **b** By random assignment, $Z \perp X_1$. It still is the case that $X_1 \rightarrow Y$
- ightharpoonup So if we adjust for X_1 we can mop up (reduce) variance in Y.
- \triangleright Improves precision in the detection of treatment effects of Z
- Covariate adjustment can also increase precision in observational research
 - ▶ But can also be quite costly...

The cost of covariate adjustment

- "Bad" control: Suppose that
 - ightharpoonup Z
 ightharpoonup Y
 - $ightharpoonup Z
 ightarrow X_2$
 - $ightharpoonup X_2 o Y$
- ▶ If we control for X_2 (a function of Z), we can induce bias in our estimate of the causal effect of Z
 - ▶ In experimental or observational research
 - One form of post-treatment bias
- ► How do we avoid "bad" controls:
 - Do not control/adjust for anything temporally after treatment (no post-treatment controls)

Implications

- Not unambiguously good to dump in more and more controls
- ▶ Robustness tests in published literature often don't make sense
- ▶ Does it make sense to ask someone if they have "controlled" for some X in an experiment?

False Negatives and Power

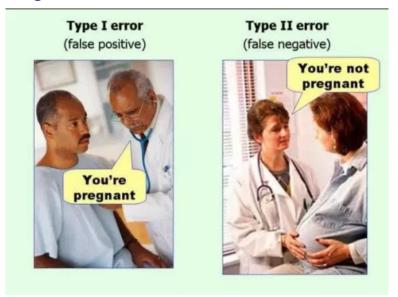


Figure 1: Illustration of error types.

What is statistical power and why should we care?

What is power?

- ▶ Probability of rejecting null hypothesis, given true effect \neq 0.
- ▶ Informally: our ability to detect a non-zero effect given that it exists.
- Formally: 1 Type II error rate

Why do we care?

- [Null findings should be published.]
- But: hard to learn from an under-powered null finding.
- Avoid "wasting" money/effort.

General Approach to Power Calculations

- Ex-ante:
 - Analytical power calculations: plug and chug
 - Only derived for some estimands (ATE/ITT)
 - Makes strong assumptions about DGP/potential outcomes functions
 - By simulation
 - Create dataset and simulate research design
 - You make your own assumptions, but assumptions are made(!)
 - DeclareDesign approach
- Ex-post:
 - We don't really do this but probably should.
 - Still requires assumptions.

Power: The quantity

- Is a probability
 - Probability of rejecting null hypothesis (given true effect \neq 0)
 - ▶ Thus power \in (0, 1)
 - ► Standard thresholds: 0.8 or 0.9
 - ▶ What is the interpretation of power of 0.8?

Analytical Power Calculation: The ATE

► Two-tailed hypothesis test:

Power =
$$\Phi\left(\underbrace{\frac{|\tau|\sqrt{N}}{2\sigma}}_{\text{Variable}} - \underbrace{\Phi^{-1}(1-\frac{\alpha}{2})}_{\text{Constant}}\right)$$
 (3)

Components:

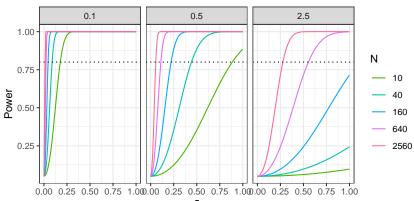
- Φ: Standard normal CDF is monotonically increasing
- ightharpoonup au: the effect size
- ► N: the sample size
- \triangleright σ : the standard deviation of the outcome
- $ightharpoonup \alpha$: the significance level (typically 0.05)

Power: Comparative Statics

Power is:

- ▶ Increasing in $|\tau|$
- ► Increasing in *N*
- ightharpoonup Decreasing in σ

Panels are increasing values of $\boldsymbol{\sigma}$



Limitations to the Power Formula

- ► Limited to ATE/ITT
- Makes specific assumptions about the data generating process
- Incompatible with more complex designs

Alternative: Simulation

- ▶ Define the sample, assignment procedure
- ▶ Define the potential outcomes function
- Create data, estimate
- Do this many times; evaluate how many times

Power Simulation: Intuition

```
power sim <- function(N, tau){</pre>
  YO \leftarrow rnorm(n = N)
  Z \leftarrow complete ra(N = N)
  Y1 < - Y0 + 7 * tau
  Yobs \leftarrow Z * Y1 + (1 - Z) * Y0
  estimator <- lm_robust(Yobs ~ Z)</pre>
  pval <- estimator$p.value[2]</pre>
  return(pval)
sims \leftarrow replicate(n = 500,
                      expr = power sim(N = 80, tau = .25))
sum(sims < 0.05)/length(sims)</pre>
```

```
## [1] 0.188
```

Power and Clustered Designs

- ightharpoonup Given a fixed N, a clustered design is weakly less powered than a non-clustered design
 - ► The difference is often substantial
- ▶ To increase power
 - Better to increase number of clusters than number of units per cluster
 - How big of a hit to power depends critically on the intra-cluster correlation: ratio of variance within clusters to total variance
- ▶ Note: We have to estimate variance correctly:
 - Clustering standard errors (the usual)
 - Randomization inference

Clustering and Power: Variables

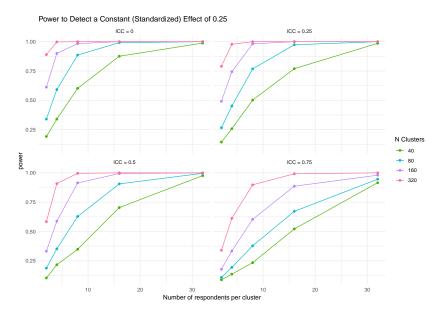
Variables

- ▶ Number of clusters $\in \{40, 80, 160, 320\}$
 - Clustered standard errors not consistent for fewer clusters
- Number of units per clusters $\in \{2, 4, 8, 16, 32\}$
- ▶ Intra-cluster correlation $\in \{0, .25, .5, .75\}$

Constants:

ightharpoonup au = 0.25 (standardized effect)

Demonstration of Clustering and Power

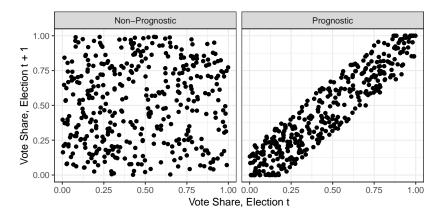


A Note on Clustering in Observational Research

- Often overlooked, leading to (possibly) wildly understated uncertainty
 - Frequentist inference based on ratio $\frac{\hat{\beta}}{\hat{s}e}$
 - If we underestimate \hat{se} , we are much more likely to reject H_0 . (Type-I error rate is too high.)
- Consider research on macro-economic conditions ⇒ Voteshare for incumbent party with survey data
 - If treatment is macro-economic conditions, we should cluster at the election level
 - ▶ How many elections have there been in a given country?
 - Clustered SEs consistent for n > 40 or 50 clusters
- Many observational designs much less powered than we think they are!

Why does covariate adjustment improve power?

- Mops up variation in the dependent variable
 - If prognostic, covariate adjustment can reduce variance dramatically: ↓ Variance ⇒ ↑ Power
 - ▶ If non-prognostic, minimal power gains



Covariate adjustment: Best Practices

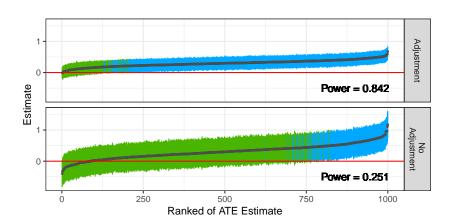
- All covariates must be pretreatment
 - ► Never adjust for post-treatment variables
 - In an experiment looking at effects of leaflets on incumbent vote share, we should not "control" for turnout
- In practice, if all controls are pretreatment, you can add whatever controls you want
 - Until number of observations number of controls < 20</p>
- Missingness in pre-treatment covariates
 - Do not drop observations on account of pre-treatment missingness
 - ▶ Impute mean/median for pretreatment variable
 - ► Include missingness indicator and impute some value in the missing variable

Example of the Benefits of Covariate Adjustment

Consider the following:

$$X_i \sim \mathcal{N}(0, 1)$$

 $Y_i = X_i + 0.5 \times \mathcal{N}(0, 1) + \tau Z_i$



Blocking

- Blocking: randomly assign treatment within blocks
- "Ex-ante" covariate adjustment
- ▶ Two benefits of blocking
 - ▶ Higher precision/efficiency \rightarrow more power
 - Reduce "conditional bias": Association between treatment assignment and POs
- Benefits of blocking over covariate adjustment clearest in small experiments

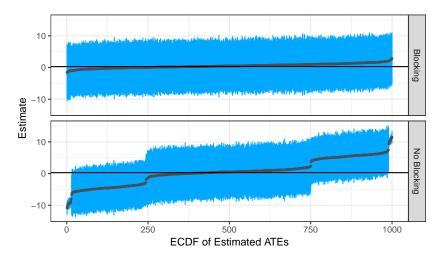
Example

(Very small) experiment where blocks "explain" most variation in DV

```
block_sim <- function(){</pre>
  blocks \leftarrow rep(1:2, each = 4)
  YO \leftarrow rep(c(0, 10), each = 4) + rnorm(8)
  Zcomplete <- complete_ra(N = 8)
  Zblocked <- block ra(blocks = blocks)
 Yobs1 <- YO + Zcomplete * .5
 Yobs2 <- YO + Zblocked * .5
 m1 <- lm(Yobs1 ~ Zcomplete)
 m2 <- lm(Yobs2 ~ Zblocked)
 return(c(coeftest(m1,
     vcov. = vcovHC(x = m1, type = "HC2"))[2,1:2],
           coeftest (m2,
     vcov. = vcovHC(x = m2, type = "HC2"))[2,1:2]))
```

Blocking Simulation Results

- ► Two benefits:
 - ► (Slight) efficiency gains still have *huge* CIs
 - ▶ Reduction in conditional bias kinks in line



Costs to Covariate Adjustment, Blocking

- Blocking
 - Sometimes harder to analyze correctly
 - ▶ If you block randomize and forget what the blocks are and blocks are anything but exactly vanilla, not great...
- Covariate Adjustment
 - Adjusting on a post-treatment variable is a big problem
 - Freedman's bias as n of observations decreases and K covariates increases

Comment on Power

- Know the dependent variable
 - What is the plausible range of variation?
 - Example 1: Effect of an intervention on corruption, measured in terms of public works projects
 - DV: Timing of contract completion (idea: corrupt projects take longer)
 - But do contracts ever complete early?
 - Example 2: Effect of a bias-reducing intervention
 - DV: Some behavioral measure of bias, only exhibited by 4% of participants in control
- An otherwise well-powered design with limited possible movement in the DV may not be powered to detect effects

A Note in Power in Factorial Designs:

▶ The usual regression-based estimator for factorial designs with T_1 and T_2 is:

$$Y_i = \beta_0 + \beta_1 T_1 + \beta_2 T_2 + \beta_3 T_1 T_2$$

Or consider the estimator that doesn't include the interaction:

$$Y_i = \gamma_0 + \gamma_1 T_1 + \gamma_2 T_2$$

Notes:

- The second estimator is generally well powered (estimand is subtly different)
- ▶ In the first estimator, β_3 is not very well powered, generally

Conclusion: How to improve your power:

- 1. Increase the N
 - ▶ If clustered, increase *n* clusters if at all possible
- 2. Strengthen the treatment (increase $|\tau|$)
- 3. Improve precision:
 - Covariate adjusment
 - Blocking
 - (Indexing)
- 4. Examine your DV for possible threats to power