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False Negatives and Power

Figure 1:



What is statistical power and why should we care?

What is power?

I Probability of rejecting null hypothesis, given true effect 6= 0.
I Informally: our ability to detect a non-zero effect given that it

exists.
I Formally: 1 - Type II error rate

Why do we care?

I [Null findings should be published.]
I But: hard to learn from an under-powered null finding.
I Avoid “wasting” money/effort.



General Approach to Power Calculations

I Ex-ante:
I Analytical power calculations: plug and chug

I Only derived for some estimands (ATE/ITT)
I Makes strong assumptions about DGP/potential outcomes

functions
I By simulation

I Create dataset and simulate research design
I You make your own assumptions, but assumptions are made(!)
I DeclareDesign approach

I Ex-post:
I We don’t really do this but probably should.
I Still requires assumptions.



Power: The quantity

I Is a probability
I Probability of rejecting null hypothesis (given true effect 6= 0)
I Thus power ∈ (0, 1)
I Standard thresholds: 0.8 or 0.9

I What is the interpretation of power of 0.8?



Analytical Power Calculation: The ATE

I Two-tailed hypothesis test:

Power = Φ
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Components:

I Φ: Standard normal CDF is monotonically increasing
I τ : the effect size
I N: the sample size
I σ: the standard deviation of the outcome
I α: the significance level (typically 0.05)



Power: Comparative Statics
Power is:

I Increasing in |τ |
I Increasing in N
I Decreasing in σ
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Limitations to the Power Formula

I Limited to ATE/ITT
I Makes specific assumptions about the data generating process
I Incompatible with more complex designs

Alternative: Simulation

I Define the sample, assignment procedure
I Define the potential outcomes function
I Create data, estimate
I Do this many times; evaluate how many times



Power Simulation: Intuition
power_sim <- function(N, tau){

Y0 <- rnorm(n = N)
Z <- complete_ra(N = N)
Y1 <- Y0 + Z * tau
Yobs <- Z * Y1 + (1 - Z) * Y0
estimator <- lm(Yobs ~ Z)
pval <- coeftest(estimator,

vcov. = vcovHC(estimator, type = "HC2"))[2,4]
return(pval)

}

sims <- replicate(n = 500,
expr = power_sim(N = 80, tau = .25))

sum(sims < 0.05)/length(sims)

## [1] 0.194



Power and Clustered Designs

I Given a fixed N, a clustered design is weakly less powered than
a non-clustered design

I The difference is often substantial

I To increase power
I Better to increase number of clusters than number of units per

cluster
I How big of a hit to power depends critically on the intra-cluster

correlation: ratio of variance within clusters to total variance

I Note: We have to estimate variance correctly:
I Clustering standard errors (the usual)
I Randomization inference



Demonstration of Clustering and Power
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A Note on Clustering in Observational Research

I Often overlooked, leading to (possibly) wildly understated
uncertainty

I Frequentist inference based on ratio β̂
ŝe

I If we underestimate ŝe, we are much more likely to reject H0.
(Type-I error rate is too high.)

I Consider research on macro-economic conditions ⇒ Voteshare
for incumbent party with survey data

I If treatment is macro-economic conditions, we should cluster at
the election level

I How many elections have there been in a given country?
I Clustered SEs consistent for n > 40 or 50 clusters

I Many observational designs much less powered than we think
they are!



How to Improve Power

I Three obvious suspects:
1. Increase the N or number of clusters
2. Find a stronger treatment (larger τ)
3. Find ways to reduce the variance σ

I Focus on methods for improving efficiency (3):
I Blocking
I Covariate adjustment



Covariate adjustment

I Covariate adjustment = “Controlling” for variables in multiple
regression.

I Regression model without covariate adjustment:

Yi = β0 + β1Zi + εi (2)
I Regression model with covariate adjustment

Yi = β0 + β1Zi + β2Xi + εi (3)
I If Zi is randomly assigned and Xi is not, is β1 causal? Is β2?



Why does covariate adjustment improve power?

I Mops up variation in the dependent variable
I If prognostic, covariate adjustment can reduce variance

dramatically: ↓ Variance ⇒ ↑ Power
I If non-prognostic, minimal power gains
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Covariate adjustment: Best Practices

I All covariates must be pretreatment
I Never adjust for post-treatment variables
I In an experiment looking at effects of leaflets on incumbent

vote share, we should not “control” for turnout

I In practice, if all controls are pretreatment, you can add
whatever controls you want

I Until number of observations - number of controls < 20

I Missingness in pre-treatment covariates
I Do not drop observations on account of pre-treatment

missingness
I Impute mean/median for pretreatment variable
I Include missingness indicator and impute some value in the

missing variable



Example of the Benefits of Covariate Adjustment
Consider the following:

Xi ∼ N (0, 1), Yi (0) = X + 0.5×N (0, 1), Yi (1) = Yi (0) + τ
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Blocking

I Blocking: randomly assign treatment within blocks
I “Ex-ante” covariate adjustment
I Two benefits of blocking

I Higher precision/efficiency → more power
I Reduce “conditional bias”: Association between treatment

assignment and POs

I Benefits of blocking over covariate adjustment clearest in small
experiments



Example
I (Very small) experiment where blocks “explain” most variation

in DV

block_sim <- function(){
blocks <- rep(1:2, each = 4)
Y0 <- rep(c(0, 10), each = 4) + rnorm(8)
Zcomplete <- complete_ra(N = 8)
Zblocked <- block_ra(blocks = blocks)
Yobs1 <- Y0 + Zcomplete * .5
Yobs2 <- Y0 + Zblocked * .5
m1 <- lm(Yobs1 ~ Zcomplete)
m2 <- lm(Yobs2 ~ Zblocked)
return(c(coeftest(m1,

vcov. = vcovHC(x = m1, type = "HC2"))[2,1:2],
coeftest(m2,

vcov. = vcovHC(x = m2, type = "HC2"))[2,1:2]))
}



Blocking Simulation Results
I Two benefits:

I (Slight) efficiency gains – still have huge CIs
I Reduction in conditional bias – kinks in line
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General notes on Covariate Adjustment + Blocking

I Often further increases in efficiency, thus power
I For example, Haiti project used:

I Blocking in randomization
I Block fixed effects in estimation (a form of covariate

adjustment)



Costs to Covariate Adjustment, Blocking

I Blocking
I Sometimes harder to analyze correctly
I If you block randomize and forget what the blocks are and

blocks are anything but exactly vanilla, not great. . .

I Covariate Adjustment
I Adjusting on a post-treatment variable is a big problem
I Freedman’s bias as n of observations decreases and K

covariates increases



Comment on Power

I Know the dependent variable
I What is the plausible range of variation?
I Example 1: Effect of an intervention on corruption, measured in

terms of public works projects
I DV: Timing of contract completion (idea: corrupt projects take

longer)
I But do contracts ever complete early?

I Example 2: Effect of a bias-reducing intervention
I DV: Some behavioral measure of bias, only exhibited by 4% of

participants in control

I An otherwise well-powered design with limited possible
movement in the DV may not be powered to detect effects



A Note in Power in Factorial Designs:

I The usual regression-based estimator for factorial designs with
T1 and T2 is:

Yi = β0 + β1T1 + β2T2 + β3T1T2

I Or consider the estimator that doesn’t include the interaction:

Yi = γ0 + γ1T1 + γ2T2

Notes:
I The second estimator is generally well powered (estimand is

subtly different)
I In the first estimator, β3 is not very well powered, generally



Conclusion: How to improve your power:

1. Increase the N
I If clustered, increase n clusters if at all possible

2. Strengthen the treatment (increase |τ |)
3. Improve precision:

I Covariate adjusment
I Blocking
I (Indexing)

4. Examine your DV for possible threats to power


