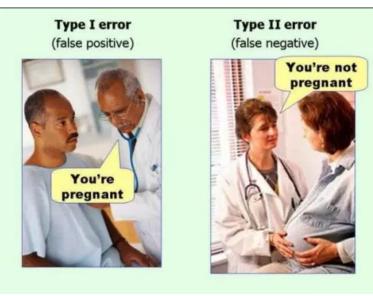
Statistical Power

Tara Slough

EGAP Learning Days IX

False Negatives and Power



What is statistical power and why should we care?

What is power?

- Probability of rejecting null hypothesis, given true effect \neq 0.
- Informally: our ability to detect a non-zero effect given that it exists.
- Formally: 1 Type II error rate

Why do we care?

- [Null findings should be published.]
- But: hard to learn from an under-powered null finding.
- Avoid "wasting" money/effort.

General Approach to Power Calculations

Ex-ante:

- Analytical power calculations: plug and chug
 - Only derived for some estimands (ATE/ITT)
 - Makes strong assumptions about DGP/potential outcomes functions
- By simulation
 - Create dataset and simulate research design
 - You make your own assumptions, but assumptions are made(!)
 - DeclareDesign approach
- Ex-post:
 - We don't really do this but probably should.
 - Still requires assumptions.

Power: The quantity

- Is a probability
 - Probability of rejecting null hypothesis (given true effect \neq 0)
 - Thus power \in (0, 1)
 - Standard thresholds: 0.8 or 0.9
 - What is the interpretation of power of 0.8?

Analytical Power Calculation: The ATE

Two-tailed hypothesis test:

$$\mathsf{Power} = \Phi\left(\underbrace{\frac{|\tau|\sqrt{N}}{2\sigma}}_{\mathsf{Variable}} - \underbrace{\Phi^{-1}(1 - \frac{\alpha}{2})}_{\mathsf{Constant}}\right) \tag{1}$$

Components:

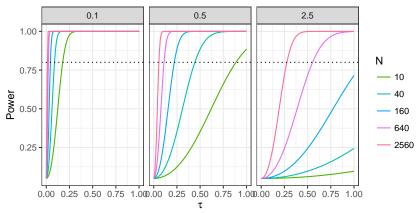
- Φ: Standard normal CDF is monotonically increasing
- ▶ *τ*: the effect size
- N: the sample size
- σ : the standard deviation of the outcome
- α : the significance level (typically 0.05)

Power: Comparative Statics

Power is:

- ► Increasing in |τ|
- Increasing in N
- Decreasing in σ

Panels are increasing values of $\boldsymbol{\sigma}$



Limitations to the Power Formula

- Limited to ATE/ITT
- Makes specific assumptions about the data generating process
- Incompatible with more complex designs

Alternative: Simulation

- Define the sample, assignment procedure
- Define the potential outcomes function
- Create data, estimate
- Do this many times; evaluate how many times

Power Simulation: Intuition

```
power sim <- function(N, tau){
  YO <- rnorm(n = N)
  Z <- complete ra(N = N)
  Y1 <- Y0 + Z * tau
  Yobs <-Z * Y1 + (1 - Z) * Y0
  estimator <- lm(Yobs ~ Z)
  pval <- coeftest(estimator,</pre>
           vcov. = vcovHC(estimator, type = "HC2"))[2,4]
 return(pval)
}
sims <- replicate(n = 500,
                   expr = power sim(N = 80, tau = .25))
sum(sims < 0.05)/length(sims)</pre>
```

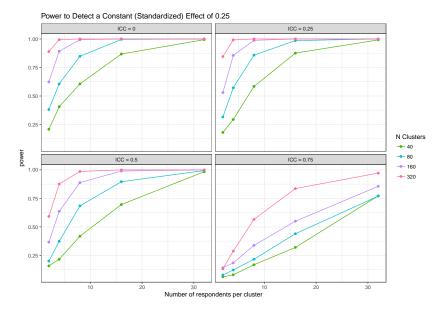
[1] 0.194

Power and Clustered Designs

► Given a fixed *N*, a clustered design is weakly less powered than a non-clustered design

- The difference is often substantial
- To increase power
 - Better to increase number of clusters than number of units per cluster
 - How big of a hit to power depends critically on the intra-cluster correlation: ratio of variance within clusters to total variance
- Note: We have to estimate variance correctly:
 - Clustering standard errors (the usual)
 - Randomization inference

Demonstration of Clustering and Power



A Note on Clustering in Observational Research

- Often overlooked, leading to (possibly) wildly understated uncertainty
 - Frequentist inference based on ratio $\frac{\hat{\beta}}{\hat{se}}$
 - If we underestimate se, we are much more likely to reject H₀. (Type-I error rate is too high.)
- ► Consider research on macro-economic conditions ⇒ Voteshare for incumbent party with survey data
 - If treatment is macro-economic conditions, we should cluster at the *election* level
 - How many elections have there been in a given country?
 - Clustered SEs consistent for n > 40 or 50 clusters
- Many observational designs much less powered than we think they are!

How to Improve Power

- Three obvious suspects:
 - 1. Increase the N or number of clusters
 - 2. Find a stronger treatment (larger τ)
 - 3. Find ways to reduce the variance σ
- Focus on methods for improving efficiency (3):
 - Blocking
 - Covariate adjustment

Covariate adjustment

- Covariate adjustment = "Controlling" for variables in multiple regression.
- Regression model without covariate adjustment:

$$Y_i = \beta_0 + \beta_1 Z_i + \epsilon_i \tag{2}$$

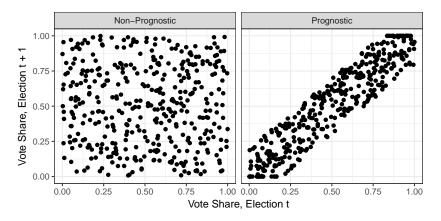
Regression model with covariate adjustment

$$Y_i = \beta_0 + \beta_1 Z_i + \beta_2 X_i + \epsilon_i \tag{3}$$

• If Z_i is randomly assigned and X_i is not, is β_1 causal? Is β_2 ?

Why does covariate adjustment improve power?

- Mops up variation in the dependent variable
 - If prognostic, covariate adjustment can reduce variance dramatically: ↓ Variance ⇒ ↑ Power
 - If non-prognostic, minimal power gains



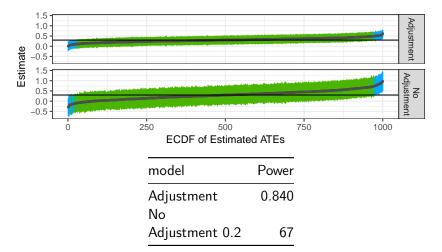
Covariate adjustment: Best Practices

- All covariates must be pretreatment
 - Never adjust for post-treatment variables
 - In an experiment looking at effects of leaflets on incumbent vote share, we should not "control" for turnout
- In practice, if all controls are pretreatment, you can add whatever controls you want
 - Until number of observations number of controls < 20
- Missingness in pre-treatment covariates
 - Do not drop observations on account of pre-treatment missingness
 - Impute mean/median for pretreatment variable
 - Include missingness indicator and impute some value in the missing variable

Example of the Benefits of Covariate Adjustment

Consider the following:

$$X_i \sim \mathcal{N}(0,1), \hspace{1em} Y_i(0) = X + 0.5 imes \mathcal{N}(0,1), \hspace{1em} Y_i(1) = Y_i(0) + au$$



Blocking

- Blocking: randomly assign treatment within blocks
- "Ex-ante" covariate adjustment
- Two benefits of blocking
 - Higher precision/efficiency \rightarrow more power
 - Reduce "conditional bias": Association between treatment assignment and POs
- Benefits of blocking over covariate adjustment clearest in small experiments

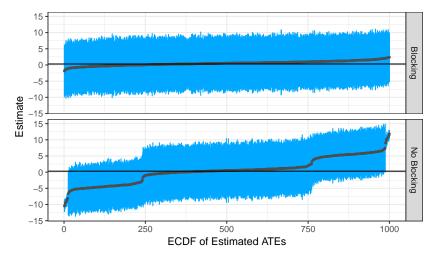
Example

 (Very small) experiment where blocks "explain" most variation in DV

```
block_sim <- function(){</pre>
  blocks <- rep(1:2, each = 4)
  YO <- rep(c(0, 10), each = 4) + rnorm(8)
  Zcomplete <- complete_ra(N = 8)</pre>
  Zblocked <- block ra(blocks = blocks)
 Yobs1 <- YO + Zcomplete * .5
 Yobs2 <- Y0 + Zblocked * .5
 m1 <- lm(Yobs1 ~ Zcomplete)
 m2 <- lm(Yobs2 ~ Zblocked)
 return(c(coeftest(m1,
     vcov. = vcovHC(x = m1, type = "HC2"))[2,1:2],
           coeftest(m2,
     vcov. = vcovHC(x = m2, type = "HC2"))[2,1:2]))
}
```

Blocking Simulation Results

- Two benefits:
 - (Slight) efficiency gains still have huge Cls
 - Reduction in conditional bias kinks in line



General notes on Covariate Adjustment + Blocking

- Often further increases in efficiency, thus power
- For example, Haiti project used:
 - Blocking in randomization
 - Block fixed effects in estimation (a form of covariate adjustment)

Costs to Covariate Adjustment, Blocking

Blocking

- Sometimes harder to analyze correctly
- If you block randomize and forget what the blocks are and blocks are anything but exactly vanilla, not great...
- Covariate Adjustment
 - Adjusting on a post-treatment variable is a big problem
 - Freedman's bias as n of observations decreases and K covariates increases

Comment on Power

- Know the dependent variable
 - What is the plausible range of variation?
 - Example 1: Effect of an intervention on corruption, measured in terms of public works projects
 - DV: Timing of contract completion (idea: corrupt projects take longer)
 - But do contracts ever complete early?
 - Example 2: Effect of a bias-reducing intervention
 - DV: Some behavioral measure of bias, only exhibited by 4% of participants in control
- An otherwise well-powered design with limited possible movement in the DV may not be powered to detect effects

A Note in Power in Factorial Designs:

The usual regression-based estimator for factorial designs with T₁ and T₂ is:

$$Y_i = \beta_0 + \beta_1 T_1 + \beta_2 T_2 + \beta_3 T_1 T_2$$

Or consider the estimator that doesn't include the interaction:

$$Y_i = \gamma_0 + \gamma_1 T_1 + \gamma_2 T_2$$

Notes:

- The second estimator is generally well powered (estimand is subtly different)
- In the first estimator, β_3 is not very well powered, generally

Conclusion: How to improve your power:

1. Increase the N

- ▶ If clustered, increase *n* clusters if at all possible
- 2. Strengthen the treatment (increase $|\tau|$)
- 3. Improve precision:
 - Covariate adjusment
 - Blocking
 - (Indexing)
- 4. Examine your DV for possible threats to power