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The Role of Hypothesis Tests in Causal Inference
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Key points for this lecture

▶ Statistical inference (e.g., hypothesis tests and confidence
intervals) requires inference — reasoning about the
unobserved.

▶ p-values require probability distributions.

▶ Randomization (or Design) + a Hypothesis + a Test Statistic
Function → probability distributions representing the
hypothesis (reference distributions)

▶ Observed Values of Test Statistics + Reference Distribution →
p-value.
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The role of hypothesis tests in causal inference I

▶ The fundamental problem of causal inference says that we
can see only one potential outcome for any given unit.

▶ So, if a counterfactual causal effect of the treatment, T , for
Jake occurs when yJake,T=1 ̸= yJake,T=0, then how can we
learn about the causal effect?

▶ One solution is the estimation of averages of causal effects
(the ATE, ITT, LATE).

▶ This is what we call Neyman’s approach.
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The role of hypothesis tests in causal inference II

▶ Another solution is to make claims or guesses about the
causal effects.

▶ We could say, “I think that the effect on Jake is 5.” or “This
experiment had no effect on anyone.” And then we ask “How
much evidence does this experiment have about that claim?”

▶ This evidence is summarized in a p-value.

▶ We call this Fisher’s approach.
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The role of hypothesis tests in causal inference III

▶ The hypothesis testing approach to causal inference doesn’t
provide a best guess but instead tells you how much evidence or
information the research design provides about a causal claim.

▶ The estimation approach provides a best guess but doesn’t tell
you how much you know about that guess.
▶ For example, a best guess with N = 10 seems to tell us less

about the effect than N = 1000.
▶ For example, a best guess when 95% of Y = 1 and 5% of

Y = 0 seems to tell us less than when outcomes are evenly split
betwee 0 and 1.

▶ We nearly always report both since both help us make
decisions: “Our best guess of the treatment effect was 5, and
we could reject the idea that the effect was 0 (p=.01).”
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Hypothesis Testing Basics
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Ingredients of a hypothesis test

▶ A hypothesis is a statement about a relationship among
potential outcomes.

▶ A test statistic summarizes the relationship between
treatment and observed outcomes.

▶ The design allows us to link the hypothesis and the test
statistic: calculate a test statistic that describes a relationship
between potential outcomes.

▶ The design also tells us how to generate a distribution of
possible test statistics implied by the hypothesis.

▶ A p-value describes the relationship between our observed test
statistic and the distribution of possible hypothesized test
statistics.
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A hypothesis is a statement about or model of a
relationship between potential outcomes

Outcome Treatment yi,0 ITE yi,1 Y > 0
0 0 0 10 10 0

30 1 0 30 30 0
0 0 0 200 200 0
1 0 1 90 91 0

11 1 1 10 11 0
23 1 3 20 23 0
34 1 4 30 34 0
45 1 5 40 45 0

190 0 190 90 280 1
200 0 200 20 220 1

For example, the sharp, or strong, null hypothesis of no effects is
H0 : yi ,1 = yi ,0
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Test statistics summarize treatment-to-outcome
relationships

## The mean difference test statistic
meanTT <- function(ys, z) {

mean(ys[z == 1]) - mean(ys[z == 0])
}
## The difference of mean ranks test statistic
meanrankTT <- function(ys, z) {

ranky <- rank(ys)
mean(ranky[z == 1]) - mean(ranky[z == 0])

}

observedMeanTT <- meanTT(ys = Y, z = T)
observedMeanRankTT <- meanrankTT(ys = Y, z = T)
observedMeanTT

[1] -49.6
observedMeanRankTT

[1] 1
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The design links test statistic and hypothesis

What we observe for each person i (Yi) is either what we would
have observed in treatment (yi ,1) or what we would have observed
in control (yi ,0).

Yi = Tiyi ,1 + (1 − Ti) ∗ yi ,0

So, if yi ,1 = yi ,0 then Yi = yi ,0.

What we actually observe is what we would have observed in the
control condition.
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The design guides creation of a distribution of hypothetical
test statistics

We need to know how to repeat our experiment:
repeatExperiment <- function(N) {

complete_ra(N)
}

Then we repeat it, calculating the implied test statistic by the
hypothesis and design each time:
set.seed(123456)
possibleMeanDiffsH0 <- replicate(

10000,
meanTT(ys = Y, z = repeatExperiment(N = 10))

)
set.seed(123456)
possibleMeanRankDiffsH0 <- replicate(

10000,
meanrankTT(ys = Y, z = repeatExperiment(N = 10))

)
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Plot the randomization distributions under the null
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Figure 1: An example of using the design of the experiment to test a
hypothesis with two different test statistics.
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p-values summarize the plots

How should we interpret these p-values? (Notice that they are
one-tailed.)
pMeanTT <- mean(possibleMeanDiffsH0 >= observedMeanTT)
pMeanRankTT <- mean(possibleMeanRankDiffsH0 >= observedMeanRankTT)
pMeanTT

[1] 0.7785
pMeanRankTT

[1] 0.3198
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How to do this in R: COIN
## using the coin package
library(coin)
set.seed(12345)
pMean2 <- coin::pvalue(oneway_test(Y ~ factor(T),

data = dat,
distribution = approximate(nresample = 1000), alternative = "less"

))
dat$rankY <- rank(dat$Y)
pMeanRank2 <- coin::pvalue(oneway_test(rankY ~ factor(T),

data = dat,
distribution = approximate(nresample = 1000), alternative = "less"

))
pMean2

[1] 0.783
99 percent confidence interval:
0.7476 0.8157

pMeanRank2

[1] 0.323
99 percent confidence interval:
0.2853 0.3624
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How to do this in R: RItools I

First install a development version of the RItools package
# dev_mode() ## dont install the package globally
renv::install("markmfredrickson/RItools@randomization-distribution",

force = TRUE
)
# dev_mode()

Then use the RItest function.
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How to do this in R: RItools II

# dev_mode()
library(RItools)
thedesignA <- simpleRandomSampler(total = N, z = dat$T, b = rep(1, N))
pMean4 <- RItest(

y = dat$Y, z = dat$T, samples = 1000, test.stat = meanTT,
sampler = thedesignA

)
pMeanRank4 <- RItest(

y = dat$Y, z = dat$T, samples = 1000, test.stat = meanrankTT,
sampler = thedesignA

)
pMean4
pMeanRank4
# dev_mode() ## and turn off dev_mode

18/66



How to do this in R: RItools III

pMean4
Call: RItest(y = dat$Y, z = dat$T, test.stat = meanTT, sampler = thedesignA,

samples = 1000)

Value Pr(>x)
Observed Test Statistic -49.6 0.78

pMeanRank4
Call: RItest(y = dat$Y, z = dat$T, test.stat = meanrankTT, sampler = thedesignA,

samples = 1000)

Value Pr(>x)
Observed Test Statistic 1 0.32
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How to do this in R: RI2
How should we interpret the two-tailed p-value here?
## using the ri2 package
library(ri2)
thedesign <- declare_ra(N = N)
dat$Z <- dat$T
pMean4 <- conduct_ri(Y ~ Z,

declaration = thedesign,
sharp_hypothesis = 0, data = dat, sims = 1000

)
summary(pMean4)

term estimate two_tailed_p_value
1 Z -49.6 0.4444
pMeanRank4 <- conduct_ri(rankY ~ Z,

declaration = thedesign,
sharp_hypothesis = 0, data = dat, sims = 1000

)
summary(pMeanRank4)

term estimate two_tailed_p_value
1 Z 1 0.6349
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Next topics

▶ Testing weak null hypotheses, H0 : ȳ1 = ȳ0.

▶ Rejecting null hypotheses (and making false positive and/or
false negative errors).

▶ Maintaining correct false positive error rates when testing more
than one hypothesis.

▶ Power of hypothesis tests (Module on Statistical Power and
Design Diagnosands).
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Testing weak null hypotheses
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Testing the weak null of no average effects

▶ The weak null hypothesis is a claim about aggregates, and it is
nearly always stated in terms of averages: H0 : ȳ1 = ȳ0

▶ The test statistic for this hypothesis is nearly always the simple
difference of means (i.e., meanTT() above).

lm1 <- lm(Y ~ T, data = dat)
lm1P <- summary(lm1)$coef["T", "Pr(>|t|)"]
ttestP1 <- t.test(Y ~ T, data = dat)$p.value
library(estimatr)
ttestP2 <- difference_in_means(Y ~ T, data = dat)
c(lm1P = lm1P, ttestP1 = ttestP1, tttestP2 = ttestP2$p.value)

lm1P ttestP1 tttestP2.T
0.3321 0.3587 0.3587

▶ Why is the OLS p-value different? What assumptions do we
use to calculate it?
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Testing the weak null of no average effects
Both variation and location of Y changes with treatment in this
simulation.
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Figure 2: Boxplot of observed outcomes by treatment status
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Testing the weak null of no average effects

## By hand:
varEstATE <- function(Y, T) {

var(Y[T == 1]) / sum(T) + var(Y[T == 0]) / sum(1 - T)
}
seEstATE <- sqrt(varEstATE(dat$Y, dat$T))
obsTStat <- observedMeanTT / seEstATE
c(

observedTestStat = observedMeanTT,
stderror = seEstATE,
tstat = obsTStat,
pval = 2 * min(

pt(obsTStat, df = 8, lower.tail = TRUE),
pt(obsTStat, df = 8, lower.tail = FALSE)

)
)

observedTestStat stderror tstat pval
-49.6000 48.0448 -1.0324 0.3321
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Rejecting null hypotheses
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Rejecting hypotheses and making errors

▶ “In typical use, the level of the test [α] is a promise about the
test’s performance and the size is a fact about its
performance. . . ” (Rosenbaum 2010, Glossary)

▶ α is the probability of rejecting the null hypothesis when the
null hypothesis is true.

▶ How should we interpret p=0.78? What about p=0.32 (our
tests of the sharp null)?

▶ What does it mean to “reject” H0 : yi ,1 = yi ,2 at α = .05?
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False positive rates in hypothesis testing I
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Figure 3: One-sided p-value from a Normally distributed test statistic.

Notice:

▶ The curve is centered at the hypothesized value.

▶ The curve represents the world of the hypothesis.
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False positive rates in hypothesis testing II

▶ The p-value is how rare it would be to see the observed test
statistic (or a value farther away from the hypothesized value)
in the world of the null.

▶ In the picture, the observed value of the test statistic is
consistent with the hypothesized distribution, but just not
super consistent.

▶ Even if p < .05 (or p < .001) the observed test statistic must
reflect some value on the hypothesized distribution. This
means that you can always make an error when you reject a
null hypothesis.

29/66



False positive and false negative errors

▶ If we say, “The experimental result is significantly different
from the hypothesized value of zero (p = .001)! We reject that
hypothesis!” when the truth is zero we are making a false
positive error (claiming to detect something positively when
there is no signal, only noise).

▶ If we say, “We cannot distinguish this result from zero (p = .3).
We cannot reject the hypothesis of zero.” when the truth is
not zero we are making a false negative error (claiming
inability to detect something when there is a signal, but it is
overwhelmed by noise.)
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A single test of a single hypothesis

▶ A single test of a single hypothesis should encourage false
positive errors rarely (for example, if we set α = .05) then we
are saying that we are comfortable with our testing procedure
making false positive errors in no more than 5% of tests of
a given treatment assignment in a given experiment.

▶ Also, a single test of a single hypothesis should detect signal
when it exists — it should be have high statistical power. In
other words, it should not fail to detect a signal when it exists
(i.e. should have low false negative error rates).
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Decisions imply errors

▶ If errors are necessary, how can we diagnose them? How do we
learn whether our hypothesis-testing procedure might generate
too many false positive errors?

▶ Diagnose by simulation!
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Diagnosing false positive rates by simulation

▶ Across repetitions of the design:
▶ Create a true null hypothesis.
▶ Test the true null.
▶ The p-value should be large if the test is operating correctly.

▶ The proportion of small p-values should be no larger than α if
the test is operating correctly.
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Diagnosing false positive rates by simulation
Example with a binary outcome. Does the test work as it should?
What do the p-values look like when there is no effect?
collectPValues <- function(y, z, thedistribution = exact()) {

## Make Y and T have no relationship by re-randomizing T
newz <- repeatExperiment(length(y))
thedata <- data.frame(newz = newz, y = y)
thedata$ranky <- rank(y)
thedata$newzF <- factor(thedata$newz)
## The four tests
thelm <- lm(y ~ newz, data = thedata)
ttestP2 <- difference_in_means(y ~ newz, data = thedata)
owP <- pvalue(oneway_test(y ~ newzF,

data = thedata,
distribution = thedistribution

))
owRankP <- pvalue(oneway_test(ranky ~ newzF,

data = thedata,
distribution = thedistribution

))
## Return the p-values
return(c(

lmp = summary(thelm)$coef["newz", "Pr(>|t|)"],
neyp = ttestP2$p.value[[1]],
rtp = owP,
rtpRank = owRankP

))
}
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Diagnosing false positive rates by simulation

▶ When there is no effect, a test of the null hypothesis of no
effects should produce a big p-value.

▶ If the test is working well, we should see mostly big p-values
and very few small p-values.

▶ A few of the p-values for the four different tests (we did 5000
simulations, just showing 5)

[,1] [,2] [,3] [,4] [,5]
lmp 0.1411 0.1411 1 0.1411 1
neyp 0.1778 0.1778 1 0.1778 1
rtp 0.4444 0.4444 1 0.4444 1
rtpRank 0.4444 0.4444 1 0.4444 1
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Diagnosing false positive rates by simulation

In fact, if there is no effect, and if we decided to reject the null
hypothesis of no effects with α = .25, we would want no more
than 25% of our p-values in this simulation to be less than
p=.25. What do we see here? Which tests appear to have false
positive rates that are too high?
## Calculate the proportion of p-values less than .25 for each row of pDist
apply(pDist, 1, function(x) {

mean(x < .25)
})

lmp neyp rtp rtpRank
0.445 0.445 0.000 0.000
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Diagnosing false positive rates by simulation
Compare tests by plotting the proportion of p-values less than any
given number. The “randomization inference” tests control the false
positive rate (these are the tests of using direct permutation,
repeating the experiment).
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Figure 4: P-value distributions when there are no effects for four tests with
n=10. A test that controls its false positive rate should have points on or
below the diagonal line.
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False positive rate with N = 60 and binary outcome
In this design only the direct randomization inference-based tests
control the false positive rate.
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Figure 5: P-value distributions when there are no effects for four tests with
n=60 and a binary outcome. A test that controls its false positive rate
should have points on or below the diagonal line.
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False positive rate with N = 60 and continuous outcome
Here, all of the tests do a good job of controlling the false positive
rate.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p−value=p

P
ro

po
rt

io
n 

p−
va

lu
es

 <
 p

OLS
Neyman
Rand Inf Mean Diff
Rand Inf Mean Diff Ranks

Figure 6: P-value distributions when there are no effects for four tests with
n=60 and a continuous outcome. A test that controls its false positive
rate should have points on or below the diagonal line.

39/66



Summary

▶ A good test:
1. casts doubt on the truth rarely, and

2. easily distinguishes signal from noise (casts doubt on falsehoods
often).

▶ We can learn whether our testing procedure controls false
positive rates given our design.

▶ When false positive rates are not controlled, what might be
going wrong? (Often has to do with asymptotics.)
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Advanced Topics
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Some advanced topics connected to hypothesis testing

▶ Even if a given testing procedure controls the false positive rate
for a single test, it may not control the rate for a group of
multiple tests. See 10 Things you need to know about multiple
comparisons for a guide to the approaches to controlling such
rejection-rates in multiple tests.

▶ A 100(1 − α)% confidence interval can be defined as the range
of hypotheses where all of the p-values are greater than or
equal to α. This is called inverting the hypothesis test
(Rosenbaum (2010)). That is, a confidence interval is a
collection of hypothesis tests.
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What else to know about hypothesis tests I

▶ A point estimate based on hypothesis testing is called a
Hodges-Lehmann point estimate (Rosenbaum (1993),Hodges
and Lehmann (1963)).

▶ A set of hypothesis tests can be combined into one single
hypothesis test (Hansen and Bowers (2008),Caughey, Dafoe,
and Seawright (2017)).

▶ In equivalence testing, one can hypothesize that two
test-statistics are equivalent (i.e., the treatment group is the
same as the control group) rather than only about one
test-statistic (the difference between the two groups is zero)
(Hartman and Hidalgo (2018)).
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What else to know about hypothesis tests II

▶ Since a hypothesis test is a model of potential outcomes, one
can use hypothesis testing to learn about complex models, such
as models of spillover and propagation of treatment effects
across networks (Bowers, Fredrickson, and Panagopoulos
(2013), Bowers, Fredrickson, and Aronow (2016), Bowers et al.
(2018))
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Exercise: Hypothesis Tests and Test Statistics

1. If an intervention was very effective at increasing the variability
of an outcome but did not change the mean, would the p-value
reported by R or Stata if we used lm_robust() or
difference_of_means() or reg or t.test be large or small?

2. If an intervention caused the mean in the control group to be
moderately reduced but increased a few outcomes a lot (like a
10 times effect), would the p-value from R lm_robust() or
difference_of_means() be large or small?
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Testing many hypotheses
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When might we test many hypotheses?

▶ Does the effect of an experimental treatment differ between
different groups? Could differences in treatment effect arise
because of some background characteristics of experimental
subjects?

▶ Which, among several, strategies for communication were most
effective on a single outcome?

▶ Which, among several outcomes, were influenced by a single
experimental intervention?
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False positive rates in multiple hypothesis testing

Say our probability of making a false positive error is .05 in a single
test. What happens if we ask: (1) which of these 10 outcomes has
a statistically significant relationship with the two arms of
treatment? or (2) which of these 10 treatment arms had a
statistically significant relationship with the single outcome?

▶ Prob of false positive error should be less than or equal to .05
in 1 test.

▶ Prob of one false positive error should be less than or equal to
1 − ((1 − .05) × (1 − .05)) = .0975 in 2 tests.

▶ Prob of at least one false positive error with α = .05 in 10
tests should be ≤ 1 − (1 − .05)10 = .40.
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Discoveries with multiple tests

Number of errors committed when testing m null hypotheses
(Benjamini and Hochberg 1995 ’s Table 1). Cells are numbers of
tests. R is # of “discoveries” and V is # of false discoveries, U is
# of correct non-rejections, and S is # of correct rejections.

Declared
Non-Significant

Declared
Significant Total

True null hypotheses
(Htrue = 0)

U V m0

Not true null hyps
(Htrue ̸= 0)

T S m - m0

Total m-R R m
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Two main error rates to control when testing many
hypotheses I

1. Family wise error rate (FWER) is P(V > 0) (Probability of
any false positive error).
▶ We’d like to control this if we plan to make a decision about

the results of our multiple tests. The research project is mostly
confirmatory.

▶ See, for example, the projects of the OES http://oes.gsa.gov:
federal agencies will make decisions about programs depending
on whether they detect results or not.

2. False Discovery Rate (FDR) is E (V /R|R > 0) (Average
proportion of false positive errors given some rejections).

50/66

http://oes.gsa.gov


Two main error rates to control when testing many
hypotheses II

▶ We’d like to control this if we are using this experiment to plan
the next experiment. We are willing to accept a higher
probability of error in the interests of giving us more possibilities
for discovery.

▶ For example, one could imagine an organization, a government,
an NGO, could decide to conduct a series of experiments as a
part of a learning agenda: no single experiment determines
decision making, more room for exploration.

We will focus on FWER but recommend thinking about FDR and
learning agendas as a very useful way to go.
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Questions with multiple outcomes

▶ What is the effect of one treatment on multiple outcomes?

▶ On which outcomes (out of many) did the treatment have an
effect?

▶ The second question, in particular, can lead to the kind of
uncontrolled family wise error rate problems that we referred to
above.
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Multiple hypothesis testing: Multiple Outcomes

Imagine we had five outcomes and one treatment (showing potential
and observed outcomes here):

ID T Y1_T_0 Y1_T_1 Y2_T_0 Y2_T_1 Y3_T_0 Y3_T_1 Y4_T_0 Y4_T_1 Y5_T_0 Y5_T_1
1 001 0 0.19 0.19 0.366 0.366 0.546 0.546 -0.626 -0.626 -0.125 -0.125
2 002 0 -0.43 -0.43 0.931 0.931 -2.233 -2.233 1.309 1.309 1.078 1.078
3 003 0 0.91 0.91 -1.907 -1.907 0.288 0.288 -0.133 -0.133 -1.261 -1.261
4 004 0 1.79 1.79 0.052 0.052 0.544 0.544 -1.608 -1.608 -0.452 -0.452
5 005 1 1.00 1.00 -0.848 -0.848 -1.192 -1.192 -1.308 -1.308 -1.027 -1.027
6 006 0 1.11 1.11 -0.368 -0.368 -0.018 -0.018 -0.045 -0.045 0.068 0.068

ID T Y1 Y2 Y3 Y4 Y5
1 001 0 0.19 0.366 0.546 -0.626 -0.125
2 002 0 -0.43 0.931 -2.233 1.309 1.078
3 003 0 0.91 -1.907 0.288 -0.133 -1.261
4 004 0 1.79 0.052 0.544 -1.608 -0.452
5 005 1 1.00 -0.848 -1.192 -1.308 -1.027
6 006 0 1.11 -0.368 -0.018 -0.045 0.068
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Can we detect an effect on outcome Y1?

Can we detect an effect on outcome Y1? (i.e., does the hypothesis
test produce a small enough p-value?)
coin::pvalue(oneway_test(Y1 ~ factor(T), data = dat1))

[1] 0.88
## Notice that the t-test p-value is also a chi-squared test
## p-value.
coin::pvalue(independence_test(Y1 ~ factor(T),

data = dat1,
teststat = "quadratic"

))

[1] 0.88
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On which of the five outcomes can we detect an effect?

On which of the five outcomes can we detect an effect? (i.e., does
any of the five hypothesis tests produce a small enough p-value?)
p1 <- coin::pvalue(oneway_test(Y1 ~ factor(T), data = dat1))
p2 <- coin::pvalue(oneway_test(Y2 ~ factor(T), data = dat1))
p3 <- coin::pvalue(oneway_test(Y3 ~ factor(T), data = dat1))
p4 <- coin::pvalue(oneway_test(Y4 ~ factor(T), data = dat1))
p5 <- coin::pvalue(oneway_test(Y5 ~ factor(T), data = dat1))
theps <- c(p1 = p1, p2 = p2, p3 = p3, p4 = p4, p5 = p5)
sort(theps)

p5 p4 p3 p2 p1
0.27 0.30 0.43 0.59 0.88
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Can we detect an effect for any of the five outcomes?

Can we detect an effect for any of the five outcomes? (i.e., does the
hypothesis test for all five outcomes at once produce a small enough
p-value?)
coin::pvalue(independence_test(Y1 + Y2 + Y3 + Y4 + Y5 ~ factor(T),

data = dat1, teststat = "quadratic"
))

[1] 0.67

Which approach is likely to mislead us with too many “statistically
significant” results (5 tests or 1 omnibus test)?

56/66



Comparing approaches I

Let’s do a simulation to learn about these testing approaches.

▶ We will (1) set the true causal effects to be 0, (2) repeatedly
re-assign treatment, and (3) each time, do each of those three
tests.

▶ Since the true effect is 0, we expect most of the p-values to be
large. (In fact, we’d like no more than 5% of the p-values to be
greater than p = .05 if we are using the α = .05 accept-reject
criterion).

des1_sim <- simulate_design(des1_plus, sims = 1000)
res1 <- des1_sim %>%

group_by(estimator) %>%
summarize(fwer = mean(p.value < .05), .groups = "drop")
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Comparing approaches II
Table 2: Family wise error rates

estimator fwer
t-test all 0.22
t-test all holm adj 0.04
t-test omnibus 0.04
t-test Y1 0.05

▶ The approach using 5 tests produces a p < .05 much too often
— recall that there are no causal effects at all for any of these
outcomes.

▶ A test of a single outcome (here Y1) has p < .05 no more than
5% of the simulations.

▶ The omnibus test also shows a well-controlled error rate.

▶ Using a multiple testing correction (here we use the “Holm”
correction) also correctly controls the false positive rate.
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The Holm correction

FYI, here is how to use the Holm correction (Notice what happens
to the p-values):
theps

p1 p2 p3 p4 p5
0.88 0.59 0.43 0.30 0.27
p.adjust(theps, method = "holm")

p1 p2 p3 p4 p5
1 1 1 1 1

## To show what happens with "significant" p-values
theps_new <- sort(c(theps, newlowp = .01))
p.adjust(theps_new, method = "holm")

newlowp p5 p4 p3 p2 p1
0.06 1.00 1.00 1.00 1.00 1.00
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Multiple hypothesis testing: Multiple treatment arms I

▶ The same kind of problem can happen when the question is
about the differential effects of a multi-armed treatment.

▶ With 5 arms, “the effect of arm 1” could mean many different
things: “Is the average potential outcome under arm 1 bigger
than arm 2?”, “Are the potential outcomes of arm 1 bigger
than the average potential outcomes of all of the other arms?”

▶ If we just focus on pairwise comparisons across arms, we could
have ((5 × 5) − 5)/2 = 10 unique tests!

60/66



Multiple hypothesis testing: Multiple treatment arms I

Here are some potential and observed outcomes and T with multiple
values.

ID T Y_T_2 Y_T_3 Y_T_4 Y_T_5 Y
1 001 3 0.366 0.546 -0.626 -0.125 0.546
2 002 3 0.931 -2.233 1.309 1.078 -2.233
3 003 4 -1.907 0.288 -0.133 -1.261 -0.133
4 004 5 0.052 0.544 -1.608 -0.452 -0.452
5 005 2 -0.848 -1.192 -1.308 -1.027 -0.848
6 006 3 -0.368 -0.018 -0.045 0.068 -0.018
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Multiple hypothesis testing: Multiple treatment arms I

Here are the 10 pairwise tests with and without adjustment for
multiple testing. Notice how one “significant” result (p = .01)
changes with adjustment.

Comparison Stat p.value p.adjust
1 1 - 2 = 0 1.435 0.231 1.0000
2 1 - 3 = 0 0.8931 0.3447 1.0000
3 1 - 4 = 0 6.404 0.01139 0.1139
4 1 - 5 = 0 0.8216 0.3647 1.0000
5 2 - 3 = 0 0.05882 0.8084 1.0000
6 2 - 4 = 0 2.641 0.1041 0.7287
7 2 - 5 = 0 0.0437 0.8344 1.0000
8 3 - 4 = 0 3.232 0.07222 0.6500
9 3 - 5 = 0 0.0003464 0.9852 1.0000
10 4 - 5 = 0 2.899 0.08861 0.7089
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Approaches to testing hypotheses with multiple arms
We illustrate four different approaches:

1. do all of the pairwise tests and choose the best one (a bad
idea);

2. do all the pairwise tests and choose the best one after
adjusting the p-values for multiple testing (a fine idea but one
with very low statistical power);

3. test the hypothesis of no relationship between any arm (an
omnibus test) and the outcome (a fine idea);

4. choose one arm to focus on in advance (a fine idea).
Table 3: Approaches to testing in multi-arm experiments.

estimator fwer
Choose best pairwise test 0.238
Choose best pairwise test after adjustment 0.028
Overall test 0.034
t-test T1 vs all 0.018

63/66



Summary

▶ Multiple testing problems can arise from multiple outcomes or
multiple treatments (or multiple moderators/interaction terms).

▶ Procedures for making hypothesis tests and confidence intervals
can involve error. Ordinary practice controls the error rates in a
single test (or single confidence interval). But multiple tests
require extra work to ensure that error rates are controlled.

▶ The loss of power arising from adjustment approaches
encourages us to consider what questions we want to ask of the
data. For example, if we want to know if the treatment had any
effect, then a joint test or omnibus test of multiple outcomes
will increase our statistical power without requiring adjustment.
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