
Statistical Power

Fill In Your Name

01 March, 2022

1/49

What is power?

Analytical calculations of power

Simulation-based power calculation

Power with covariate adjustment

Power for cluster randomization

Comparative statics

2/49

What is power?

3/49

What is power?

▶ We want to separate signal from noise.

▶ Power = probability of rejecting null hypothesis, given true
effect ̸= 0.

▶ In other words, it is the ability to detect an effect given that it
exists.

▶ Formally: (1 - Type II) error rate.

▶ Thus, power ∈ (0, 1).

▶ Standard thresholds: 0.8 or 0.9.

4/49

Starting point for power analysis

▶ Power analysis is something we do before we run a study.
▶ Helps you figure out the sample you need to detect a given

effect size.
▶ Or helps you figure out a minimal detectable difference given a

set sample size.
▶ May help you decide whether to run a study.

▶ It is hard to learn from an under-powered null finding.
▶ Was there an effect, but we were unable to detect it? or was

there no effect? We can’t say.

5/49

Power

▶ Say there truly is a treatment effect and you run your
experiment many times. How often will you get a statistically
significant result?

▶ Some guesswork to answer this question.
▶ How big is your treatment effect?
▶ How many units are treated, measured?
▶ How much noise is there in the measurement of your outcome?

6/49

Approaches to power calculation

▶ Analytical calculations of power

▶ Simulation

7/49

Power calculation tools

▶ Interactive
▶ EGAP Power Calculator
▶ rpsychologist

▶ R Packages
▶ pwr
▶ DeclareDesign, see also https://declaredesign.org/

8/49

https://egap.shinyapps.io/power-app/
https://rpsychologist.com/d3/NHST/
https://cran.r-project.org/web/packages/pwr/index.html
https://cran.r-project.org/web/packages/DeclareDesign/index.html
https://declaredesign.org/

Analytical calculations of power

9/49

Analytical calculations of power

▶ Formula:

Power = Φ
(

|τ |
√

N
2σ

− Φ−1(1 − α

2)
)

▶ Components:
▶ ϕ: standard normal CDF is monotonically increasing
▶ τ : the effect size
▶ N: the sample size
▶ σ: the standard deviation of the outcome
▶ α: the significance level (typically 0.05)

10/49

Example: Analytical calculations of power
Power for a study with 80 obserations and effect
size of 0.25
library(pwr)
pwr.t.test(

n = 40, d = 0.25, sig.level = 0.05,
power = NULL, type = c(

"two.sample",
"one.sample", "paired"

)
)

Two-sample t test power calculation

n = 40
d = 0.25

sig.level = 0.05
power = 0.1972

alternative = two.sided

NOTE: n is number in *each* group

11/49

Limitations to analytical power calculations

▶ Only derived for some test statistics (differences of means)

▶ Makes specific assumptions about the data-generating process

▶ Incompatible with more complex designs

12/49

Simulation-based power calculation

13/49

Simulation-based power calculation

▶ Create dataset and simulate research design.

▶ Assumptions are necessary for simulation studies, but you make
your own.

▶ For the DeclareDesign approach, see https://declaredesign.org/

14/49

https://declaredesign.org/

Steps

▶ Define the sample and the potential outcomes function.

▶ Define the treatment assignment procedure.

▶ Create data.

▶ Assign treatment, then estimate the effect.

▶ Do this many times.

15/49

Examples

▶ Complete randomization

▶ With covariates

▶ With cluster randomization

16/49

Example: Simulation-based power for complete
randomization

install.packages("randomizr")
library(randomizr)
library(estimatr)

Y0 is fixed in most field experiments.
So we only generate it once:
make_Y0 <- function(N) {

rnorm(n = N)
}
repeat_experiment_and_test <- function(N, Y0, tau) {

Y1 <- Y0 + tau
Z <- complete_ra(N = N)
Yobs <- Z * Y1 + (1 - Z) * Y0
estimator <- lm_robust(Yobs ~ Z)
pval <- estimator$p.value[2]
return(pval)

}

17/49

Example: Simulation-based power for complete
randomization

power_sim <- function(N, tau, sims) {
Y0 <- make_Y0(N)
pvals <- replicate(

n = sims,
repeat_experiment_and_test(N = N, Y0 = Y0, tau = tau)

)
pow <- sum(pvals < .05) / sims
return(pow)

}

set.seed(12345)
power_sim(N = 80, tau = .25, sims = 100)

[1] 0.15
power_sim(N = 80, tau = .25, sims = 100)

[1] 0.21

18/49

Example: Using DeclareDesign I

library(DeclareDesign)
library(tidyverse)
P0 <- declare_population(N, u0 = rnorm(N))
declare Y(Z=1) and Y(Z=0)
O0 <- declare_potential_outcomes(Y_Z_0 = 5 + u0, Y_Z_1 = Y_Z_0 + tau)
design is to assign m units to treatment
A0 <- declare_assignment(Z = conduct_ra(N = N, m = round(N / 2)))
estimand is the average difference between Y(Z=1) and Y(Z=0)
estimand_ate <- declare_inquiry(ATE = mean(Y_Z_1 - Y_Z_0))
R0 <- declare_reveal(Y, Z)
design0_base <- P0 + A0 + O0 + R0

For example:
design0_N100_tau25 <- redesign(design0_base, N = 100, tau = .25)
dat0_N100_tau25 <- draw_data(design0_N100_tau25)
head(dat0_N100_tau25)

19/49

Example: Using DeclareDesign II

ID u0 Z Y_Z_0 Y_Z_1 Y
1 001 -0.2060 0 4.794 5.044 4.794
2 002 -0.5875 0 4.413 4.663 4.413
3 003 -0.2908 1 4.709 4.959 4.959
4 004 -2.5649 0 2.435 2.685 2.435
5 005 -1.8967 0 3.103 3.353 3.103
6 006 -1.6401 1 3.360 3.610 3.610
with(dat0_N100_tau25, mean(Y_Z_1 - Y_Z_0)) # true ATE

[1] 0.25
with(dat0_N100_tau25, mean(Y[Z == 1]) - mean(Y[Z == 0])) # estimate

[1] 0.5569
lm_robust(Y ~ Z, data = dat0_N100_tau25)$coef # estimate

(Intercept) Z
4.8458 0.5569

20/49

Example: Using DeclareDesign III
E0 <- declare_estimator(Y ~ Z,

model = lm_robust, label = "t test 1",
inquiry = "ATE"

)
t_test <- function(data) {

test <- with(data, t.test(x = Y[Z == 1], y = Y[Z == 0]))
data.frame(statistic = test$statistic, p.value = test$p.value)

}
T0 <- declare_test(handler = label_test(t_test), label = "t test 2")
design0_plus_tests <- design0_base + E0 + T0

design0_N100_tau25_plus <- redesign(design0_plus_tests, N = 100, tau = .25)

Only repeat the random assignment, not the creation of Y0. Ignore warning
names(design0_N100_tau25_plus)

[1] "P0" "A0" "O0" "R0" "t test 1" "t test 2"
design0_N100_tau25_sims <- simulate_design(design0_N100_tau25_plus,

sims = c(1, 100, 1, 1, 1, 1)
) # only repeat the random assignment

Warning: We recommend you choose a higher number of simulations than 1 for the top level of simulation.

21/49

Example: Using DeclareDesign IV
design0_N100_tau25_sims has 200 rows (2 tests * 100 random assignments)
just look at the first 6 rows
head(design0_N100_tau25_sims)

design N tau sim_ID estimator term estimate std.error statistic p.value conf.low conf.high df outcome inquiry
1 design0_N100_tau25_plus 100 0.25 1 t test 1 Z 0.1108 0.2150 0.5153 0.60752 -0.3158 0.5374 98 Y ATE
2 design0_N100_tau25_plus 100 0.25 1 t test 2 <NA> NA NA 0.5153 0.60754 NA NA NA <NA> <NA>
3 design0_N100_tau25_plus 100 0.25 2 t test 1 Z 0.2458 0.2154 1.1411 0.25661 -0.1817 0.6733 98 Y ATE
4 design0_N100_tau25_plus 100 0.25 2 t test 2 <NA> NA NA 1.1411 0.25662 NA NA NA <NA> <NA>
5 design0_N100_tau25_plus 100 0.25 3 t test 1 Z 0.5463 0.2133 2.5608 0.01197 0.1229 0.9697 98 Y ATE
6 design0_N100_tau25_plus 100 0.25 3 t test 2 <NA> NA NA 2.5608 0.01203 NA NA NA <NA> <NA>

step_1_draw step_2_draw
1 1 1
2 1 1
3 1 2
4 1 2
5 1 3
6 1 3
for each estimator, power = proportion of simulations with p.value < 0.5
design0_N100_tau25_sims %>%

group_by(estimator) %>%
summarize(pow = mean(p.value < .05), .groups = "drop")

22/49

Example: Using DeclareDesign V

A tibble: 2 x 2
estimator pow
<chr> <dbl>

1 t test 1 0.2
2 t test 2 0.2

23/49

Power with covariate adjustment

24/49

Covariate adjustment and power

▶ Covariate adjustment can improve power because it mops up
variation in the outcome variable.
▶ If prognostic, covariate adjustment can reduce variance

dramatically. Lower variance means higher power.
▶ If non-prognostic, power gains are minimal.

▶ All covariates must be pre-treatment. Do not drop observations
on account of missingness.
▶ See the module on threats to internal validity and the 10 things

to know about covariate adjustment.

▶ Freedman’s bias as n of observations decreases and K
covariates increases.

25/49

threats-to-internal-validity-of-randomized-experiments.html
https://egap.org/resource/10-things-to-know-about-covariate-adjustment/
https://egap.org/resource/10-things-to-know-about-covariate-adjustment/

Blocking

▶ Blocking: randomly assign treatment within blocks
▶ “Ex-ante” covariate adjustment
▶ Higher precision/efficiency implies more power
▶ Reduce “conditional bias”: association between treatment

assignment and potential outcomes
▶ Benefits of blocking over covariate adjustment clearest in small

experiments

26/49

Example: Simulation-based power with a covariate I
Y0 is fixed in most field experiments. So we only generate it once
make_Y0_cov <- function(N) {

u0 <- rnorm(n = N)
x <- rpois(n = N, lambda = 2)
Y0 <- .5 * sd(u0) * x + u0
return(data.frame(Y0 = Y0, x = x))

}
X is moderarely predictive of Y0.
test_dat <- make_Y0_cov(100)
test_lm <- lm_robust(Y0 ~ x, data = test_dat)
summary(test_lm)

Call:
lm_robust(formula = Y0 ~ x, data = test_dat)

Standard error type: HC2

Coefficients:
Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper DF

(Intercept) 0.11 0.1880 0.585 0.559753653 -0.263 0.483 98
x 0.44 0.0814 5.413 0.000000441 0.279 0.602 98

Multiple R-squared: 0.231 , Adjusted R-squared: 0.223

27/49

Example: Simulation-based power with a covariate II
F-statistic: 29.3 on 1 and 98 DF, p-value: 0.000000441
now set up the simulation
repeat_experiment_and_test_cov <- function(N, tau, Y0, x) {

Y1 <- Y0 + tau
Z <- complete_ra(N = N)
Yobs <- Z * Y1 + (1 - Z) * Y0
estimator <- lm_robust(Yobs ~ Z + x, data = data.frame(Y0, Z, x))
pval <- estimator$p.value[2]
return(pval)

}
create the data once, randomly assign treatment sims times
report what proportion return p-value < 0.05
power_sim_cov <- function(N, tau, sims) {

dat <- make_Y0_cov(N)
pvals <- replicate(n = sims, repeat_experiment_and_test_cov(

N = N,
tau = tau, Y0 = dat$Y0, x = dat$x

))
pow <- sum(pvals < .05) / sims
return(pow)

}

28/49

Example: Simulation-based power with a covariate III

set.seed(12345)
power_sim_cov(N = 80, tau = .25, sims = 100)

[1] 0.13
power_sim_cov(N = 80, tau = .25, sims = 100)

[1] 0.19

29/49

Power for cluster randomization

30/49

Power and clustered designs
▶ Recall the randomization module.

▶ Given a fixed N, a clustered design is weakly less powered than
a non-clustered design.
▶ The difference is often substantial.

▶ We have to estimate variance correctly:
▶ Clustering standard errors (the usual)
▶ Randomization inference

▶ To increase power:
▶ Better to increase number of clusters than number of units per

cluster.
▶ How much clusters reduce power depends critically on the

intra-cluster correlation (the ratio of variance within clusters to
total variance).

31/49

randomization.html

A note on clustering in observational research

▶ Often overlooked, leading to (possibly) wildly understated
uncertainty.
▶ Frequentist inference based on ratio β̂/ŝe
▶ If we underestimate ŝe, we are much more likely to reject H0.

(Type-I error rate is too high.)

▶ Many observational designs much less powered than we think
they are.

32/49

Example: Simulation-based power for cluster randomization
I

Y0 is fixed in most field experiments. So we only generate it once
make_Y0_clus <- function(n_indivs, n_clus) {

n_indivs is number of people per cluster
n_clus is number of clusters
clus_id <- gl(n_clus, n_indivs)
N <- n_clus * n_indivs
u0 <- fabricatr::draw_normal_icc(N = N, clusters = clus_id, ICC = .1)
Y0 <- u0
return(data.frame(Y0 = Y0, clus_id = clus_id))

}

test_dat <- make_Y0_clus(n_indivs = 10, n_clus = 100)
confirm that this produces data with 10 in each of 100 clusters
table(test_dat$clus_id)

33/49

Example: Simulation-based power for cluster randomization
II

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
10 10
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
10 10
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
10 10

100
10

confirm ICC
ICC::ICCbare(y = Y0, x = clus_id, data = test_dat)

[1] 0.09655

34/49

Example: Simulation-based power for cluster randomization
III

repeat_experiment_and_test_clus <- function(N, tau, Y0, clus_id) {
Y1 <- Y0 + tau
here we randomize Z at the cluster level
Z <- cluster_ra(clusters = clus_id)
Yobs <- Z * Y1 + (1 - Z) * Y0
estimator <- lm_robust(Yobs ~ Z,

clusters = clus_id,
data = data.frame(Y0, Z, clus_id), se_type = "CR2"

)
pval <- estimator$p.value[2]
return(pval)

}
power_sim_clus <- function(n_indivs, n_clus, tau, sims) {

dat <- make_Y0_clus(n_indivs, n_clus)
N <- n_indivs * n_clus
randomize treatment sims times
pvals <- replicate(

n = sims,
repeat_experiment_and_test_clus(

N = N, tau = tau,
Y0 = dat$Y0, clus_id = dat$clus_id

)
)
pow <- sum(pvals < .05) / sims
return(pow)

}

set.seed(12345)
power_sim_clus(n_indivs = 8, n_clus = 100, tau = .25, sims = 100)

[1] 0.66
power_sim_clus(n_indivs = 8, n_clus = 100, tau = .25, sims = 100)

[1] 0.68

35/49

Example: Simulation-based power for cluster randomization
(DeclareDesign) I

P1 <- declare_population(
N = n_clus * n_indivs,
clusters = gl(n_clus, n_indivs),
u0 = draw_normal_icc(N = N, clusters = clusters, ICC = .2)

)
O1 <- declare_potential_outcomes(Y_Z_0 = 5 + u0, Y_Z_1 = Y_Z_0 + tau)
A1 <- declare_assignment(Z = conduct_ra(N = N, clusters = clusters))
estimand_ate <- declare_inquiry(ATE = mean(Y_Z_1 - Y_Z_0))
R1 <- declare_reveal(Y, Z)
design1_base <- P1 + A1 + O1 + R1 + estimand_ate

For example:
design1_test <- redesign(design1_base, n_clus = 10, n_indivs = 100, tau = .25)
test_d1 <- draw_data(design1_test)
confirm all individuals in a cluster have the same treatment assignment
with(test_d1, table(Z, clusters))

clusters
Z 1 2 3 4 5 6 7 8 9 10

0 100 0 100 100 100 0 0 100 0 0
1 0 100 0 0 0 100 100 0 100 100

36/49

Example: Simulation-based power for cluster randomization
(DeclareDesign) II

three estimators, differ in se_type:
E1a <- declare_estimator(Y ~ Z,

model = lm_robust, clusters = clusters,
se_type = "CR2", label = "CR2 cluster t test",
inquiry = "ATE"

)
E1b <- declare_estimator(Y ~ Z,

model = lm_robust, clusters = clusters,
se_type = "CR0", label = "CR0 cluster t test",
inquiry = "ATE"

)
E1c <- declare_estimator(Y ~ Z,

model = lm_robust, clusters = clusters,
se_type = "stata", label = "stata RCSE t test",
inquiry = "ATE"

)

design1_plus <- design1_base + E1a + E1b + E1c

design1_plus_tosim <- redesign(design1_plus, n_clus = 10, n_indivs = 100, tau = .25)

37/49

Example: Simulation-based power for cluster randomization
(DeclareDesign) III

Only repeat the random assignment, not the creation of Y0. Ignore warning
We would want more simulations in practice.
set.seed(12355)
design1_sims <- simulate_design(design1_plus_tosim,

sims = c(1, 1000, rep(1, length(design1_plus_tosim) - 2))
)

Warning: We recommend you choose a higher number of simulations than 1 for the top level of simulation.
design1_sims %>%

group_by(estimator) %>%
summarize(

pow = mean(p.value < .05),
coverage = mean(estimand <= conf.high & estimand >= conf.low),
.groups = "drop"

)

38/49

Example: Simulation-based power for cluster randomization
(DeclareDesign) IV

A tibble: 3 x 3
estimator pow coverage
<chr> <dbl> <dbl>

1 CR0 cluster t test 0.155 0.911
2 CR2 cluster t test 0.105 0.936
3 stata RCSE t test 0.131 0.918
library(DesignLibrary)
This may be simpler than the above:
d1 <- block_cluster_two_arm_designer(

N_blocks = 1,
N_clusters_in_block = 10,
N_i_in_cluster = 100,
sd_block = 0,
sd_cluster = .3,
ate = .25

)
d1_plus <- d1 + E1b + E1c
d1_sims <- simulate_design(d1_plus, sims = c(1, 1, 1000, 1, 1, 1, 1, 1))

39/49

Example: Simulation-based power for cluster randomization
(DeclareDesign) V

d1_sims %>%
group_by(estimator) %>%
summarize(

pow = mean(p.value < .05),
coverage = mean(estimand <= conf.high & estimand >= conf.low),
.groups = "drop"

)

A tibble: 3 x 3
estimator pow coverage
<chr> <dbl> <dbl>

1 CR0 cluster t test 0.209 0.914
2 estimator 0.143 0.941
3 stata RCSE t test 0.194 0.925

40/49

Comparative statics

41/49

Comparative Statics

▶ Power is:
▶ Increasing in N
▶ Increasing in |τ |
▶ Decreasing in σ

42/49

Power by sample size I

some_ns <- seq(10, 800, by = 10)
pow_by_n <- sapply(some_ns, function(then) {

pwr.t.test(n = then, d = 0.25, sig.level = 0.05)$power
})
plot(some_ns, pow_by_n,

xlab = "Sample Size",
ylab = "Power"

)
abline(h = .8)

43/49

Power by sample size II

0 200 400 600 800

0.
2

0.
4

0.
6

0.
8

1.
0

Sample Size

P
ow

er

See https://cran.r-project.org/web/packages/pwr/vignettes/pwr-vignette.html
for fancier plots
ptest <- pwr.t.test(n = NULL, d = 0.25, sig.level = 0.05, power = .8)
plot(ptest)

44/49

Power by treatment effect size I

some_taus <- seq(0, 1, by = .05)
pow_by_tau <- sapply(some_taus, function(thetau) {

pwr.t.test(n = 200, d = thetau, sig.level = 0.05)$power
})
plot(some_taus, pow_by_tau,

xlab = "Average Treatment Effect (Standardized)",
ylab = "Power"

)
abline(h = .8)

45/49

Power by treatment effect size II

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

Average Treatment Effect (Standardized)

P
ow

er

46/49

EGAP Power Calculator

▶ Try the calculator at: https://egap.shinyapps.io/power-app/

▶ For cluster randomization designs, try adjusting:
▶ Number of clusters
▶ Number of units per clusters
▶ Intra-cluster correlation
▶ Treatment effect

47/49

https://egap.shinyapps.io/power-app/

Comments

▶ Know your outcome variable.

▶ What effects can you realistically expect from your treatment?

▶ What is the plausible range of variation of the outcome
variable?
▶ A design with limited possible movement in the outcome

variable may not be well-powered.

48/49

Conclusion: How to improve your power

1. Increase the N
▶ If clustered, increase the number of clusters if at all possible

2. Strengthen the treatment

3. Improve precision
▶ Covariate adjustment
▶ Blocking

4. Better measurement of the outcome variable

49/49

	What is power?
	Analytical calculations of power
	Simulation-based power calculation
	Power with covariate adjustment
	Power for cluster randomization
	Comparative statics

